Association of Inclined Sporadic E-Layers and Small-Scale Atmospheric Waves in Earth’s Ionosphere

Abstract

A new method has been developed for determining the characteristics of internal atmospheric waves based on the use of inclined sporadic E-layers of Earth’s ionosphere as a detector. The method is based on the fact that an internal wave propagating through an initially horizontal sporadic E-layercauses rotation of the plasma density gradient in the direction of the wave vecto which leads to the establishment of a layer ionization plane parallel to the phase wave front. The developed method allows us to study the relationship between small-scale internal waves and sporadic E-layers in Earth’s ionosphere and significantly expands the capabilities of traditional radio occultation monitoring of the atmosphere. It was found that the studied internal atmospheric waves have periods from 35 to 46 min and vertical phase velocities from 1.2 to 2.0 m/s which is in good agreement with the results of independent experiments and modeling data for sporadic E-structures at an altitude of ~100 km in Earth’s polar cap.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. 1

    Wu, D.L., Ao, C.O., Hajj, G.A., de la Torre Juarez, M., et al., Sporadic E morphology from GPS-CHAMP radio occultations, J. Geophys. Res., 2005, vol. 110, A01306. https://doi.org/10.1029/2004JA010701

    ADS  Article  Google Scholar 

  2. 2

    Arras, C., Wickert, J., Beyerle, G., et al., A global climatology of ionospheric irregularities derived from GPS radio occultation, Geophys. Res. Lett., 2008, vol. 35, L14809. https://doi.org/10.1029/2008GL03415

    ADS  Article  Google Scholar 

  3. 3

    Haldoupis, C.A., Tutorial review on sporadic E layers, in Aeronomy of the Earth’s Atmosphere and Ionosphere, Abdu, M.A., Pancheva, D., and Bhattacharyya, A., Eds., Berlin: Springer, 2011, pp. 381–394. https://doi.org/10.1007/978-94-007-0326-1-2

    Google Scholar 

  4. 4

    Whitehead, J.D., Recent work on midlatitude and equatorial sporadic E, J. Atmos. Terr. Phys., 1989, vol. 51, pp. 401–424. https://doi.org/10.1016/0021-9169(89)90122-0

    ADS  Article  Google Scholar 

  5. 5

    Kirkwood, S. and Nilsson, H., High-latitude sporadic-E and other thin layers—the role of magnetospheric electric fields, Space Sci. Rev., 2000, vol. 91, pp. 579–613.

    ADS  Article  Google Scholar 

  6. 6

    Haldoupis, C., Midlatitude sporadic E layers. A typical paradigm of atmosphere–ionosphere coupling, Space Sci. Rev., 2012, vol. 168, pp. 441–461.

    ADS  Article  Google Scholar 

  7. 7

    Roddy, P.A., Earle, G.D., Swenson, C.M., et al., Relative concentrations of molecular and metallic ions in midlatitude intermediate and sporadic-E layers, Geophys. Res. Lett., 2004, vol. 31, L19807. https://doi.org/10.1029/2004GL020604

    ADS  Article  Google Scholar 

  8. 8

    Maruyama, T., Kato, H., and Nakamura, M., Ionospheric effects of the Leonid meteor shower in November 2001 as observed by rapid run ionosondes, J. Geophys. Res., 2003, vol. 108, no. A8, 1324. https://doi.org/10.1029/2003JA009831

    Article  Google Scholar 

  9. 9

    Maruyama, T., Kato, H., and Nakamura, M., Meteor-induced transient sporadic E as inferred from rapid-run ionosonde observations at midlatitudes, J. Geophys. Res., 2008, vol. 113, A09308. https://doi.org/10.1029/2008JA013362

    ADS  Article  Google Scholar 

  10. 10

    Malhotra, A., Mathews, J.D., and Urbina, J., Effect of meteor ionization on sporadic-E observed at Jicamarca, Geophys. Res. Lett., 2008, vol. 35, L15106. https://doi.org/10.1029/2008GL034661

    ADS  Article  Google Scholar 

  11. 11

    Hysell, D.L., Yamamoto, M., and Fukao, S., Imaging radar observations and theory of type I and type II quasi-periodic echoes, J. Geophys. Res., 2002, vol. 107, no. A11, 1360. https://doi.org/10.1029/2002JA009292

    Article  Google Scholar 

  12. 12

    Hysell, D.L., Larsen, M.F., and Zhou, Q.H., Common volume coherent and incoherent scatter radar observations of mid-latitude sporadic E-layers and QP echoes, Ann. Geophys., 2004, vol. 22, pp. 3277–3290. https://doi.org/10.5194/angeo-22-3277-2004

    ADS  Article  Google Scholar 

  13. 13

    Larsen, M.F., Hysell, D.L., Zhou, Q.H., et al., Imaging coherent scatter radar, incoherent scatter radar, and optical observations of quasiperiodic structures associated with sporadic E layers, J. Geophys. Res., 2007, vol. 112, A06321. https://doi.org/10.1029/2006JA012051

    ADS  Article  Google Scholar 

  14. 14

    Cosgrove, R.B. and Tsunoda, R.T., A direction-dependent instability of sporadic-E layers in the nighttime midlatitude ionosphere, Geophys. Res. Lett., 2002, vol. 29, no. 18, 1864. https://doi.org/10.1029/2002GL014669

    ADS  Article  Google Scholar 

  15. 15

    Cosgrove, R.B. and Tsunoda, R.T., Instability of the E–F coupled nighttime midlatitude ionosphere, J. Geophys. Res., 2004, vol. 109, A04305. https://doi.org/10.1029/2003JA010243

    ADS  Article  Google Scholar 

  16. 16

    Yokoyama, T., Hysell, D.L., Otsuka, Y., and Yamamoto, M., Three-dimensional simulation of the coupled Perkins and ES-layer instabilities in the nighttime midlatitude ionosphere, J. Geophys. Res., 2009, vol. 114, A03308. https://doi.org/10.1029/2008JA013789

    ADS  Article  Google Scholar 

  17. 17

    Woodman, R.F., Yamamoto, M., and Fukao, S., Gravity wave modulation of gradient drift instabilities in mid-latitude sporadic E irregularities, Geophys. Res. Lett., 1991, vol. 18, pp. 1197–1200. https://doi.org/10.1029/91GL01159

    ADS  Article  Google Scholar 

  18. 18

    Didebulidze, G.G. and Lomidze, L.N., Double atmospheric gravity wave frequency oscillations of sporadic E formed in a horizontal shear flow, Phys. Lett. A, 2010, vol. 374, no. 7, pp. 952–969.

    ADS  Article  Google Scholar 

  19. 19

    Chu, Y.-H., Brahmanandam, P.S., Wang, C.-Y., et al., Coordinated sporadic E layer observations made with Chung-Li 30 MHz radar, ionosonde and FORMOSAT-3/COSMIC satellites, J. Atmos. Sol.-Terr. Phys., 2011, vol. 73, pp. 883–894.

    ADS  Article  Google Scholar 

  20. 20

    Larsen, M.F., A shear instability seeding mechanism for quasiperiodic radar echoes, J. Geophys. Res., 2000, vol. 105, no. A11, pp. 24931–24940. https://doi.org/10.1029/1999JA000290

    ADS  Article  Google Scholar 

  21. 21

    Bernhardt, P.A., The modulation of sporadic-E layers by Kelvin–Helmholtz billows in the neutral atmosphere, J. Atmos. Sol.-Terr. Phys., 2002, vol. 64, pp. 1487–1504.

    ADS  Article  Google Scholar 

  22. 22

    Hysell, D.L., Nossa, E., Larsen, M.F., et al., Sporadic E layer observations over Arecibo using coherent and incoherent scatter radar: Assessing dynamic stability in the lower thermosphere, J. Geophys. Res., 2009, vol. 114, A12303. https://doi.org/10.1029/2009JA014403

    ADS  Article  Google Scholar 

  23. 23

    Tsunoda, R.T., Fukao, S., and Yamamoto, M., On the origin of quasiperiodic radar backscatter from midlatitude sporadic E, Radio Sci., 1994, vol. 29, pp. 349–366.

    ADS  Article  Google Scholar 

  24. 24

    Yamamoto, M., Fukao, S., Woodman, R.F., et al., Mid-latitude e region field-aligned irregularities observed with the MU radar, J. Geophys. Res.: Space, 1991, vol. 96, pp. 15943–15949.

    ADS  Article  Google Scholar 

  25. 25

    Yamamoto, M., Fukao, S., Ogawa, T., et al., A morphological study of mid-latitude E-region field-aligned irregularities observed with the MU radar, J. Atmos. Sol.-Terr. Phys., 1992, vol. 54, pp. 769–777.

    ADS  Article  Google Scholar 

  26. 26

    Bernhardt, P.A., Selcher, C.A., Siefring, C., et al., Radio tomographic imaging of sporadic-E layers during SEEK-2, Ann. Geophys., 2005, vol. 23, pp. 2357–2368. https://doi.org/10.5194/angeo-23-2357-2005

    ADS  Article  Google Scholar 

  27. 27

    Yamamoto, M., Fukao, S., Tsunoda, R.T., et al., SEEK-2 (Sporadic-E Experiment over Kyushu 2)—project outline, and significance, Ann. Geophys., 2005, vol. 23, pp. 2295–2305. https://doi.org/10.5194/angeo-23-2295-2005

    ADS  Article  Google Scholar 

  28. 28

    Larsen, M.F., Fukao, S., Yamamoto, M., et al., The SEEK chemical release experiment: Observed neutral wind profile in a region of sporadic-E, Geophys. Res. Lett., 1998, vol. 25, pp. 1789–1792.

    ADS  Article  Google Scholar 

  29. 29

    Larsen, M.F., Yamamoto, M., Fukao, S., and Tsunoda, R.T., SEEK 2: Observations of neutral winds, wind shears, and wave structure during a sporadic E/QP event, Ann. Geophys., 2005, vol. 23, pp. 2369–2375.

    ADS  Article  Google Scholar 

  30. 30

    Yokoyama, T., Yamamoto, M., Fukao, S., et al., Numerical simulation of mid-latitude ionospheric E-region based on SEEK and SEEK-2 observations, Ann. Geophys., 2005, vol. 23, no. 7, pp. 2377–2384.

    ADS  Article  Google Scholar 

  31. 31

    Saito, S., Yamamoto, M., Hashiguchi, H., and Maegawa, A., Observation of three-dimensional structures of quasi-periodic echoes associated with mid-latitude sporadic-E layers by MU radar ultra-multi-channel system, Geophys. Res. Lett., 2006, vol. 33, L14109. https://doi.org/10.1029/2005GL025526

    ADS  Article  Google Scholar 

  32. 32

    Maruyama, T., Fukao, S., and Yamamoto, M., A possible mechanism for echo striation generation of radar backscatter from midlatitude sporadic E, Radio Sci., 2000, vol. 35, pp. 1155–1164.

    ADS  Article  Google Scholar 

  33. 33

    Ogawa, T., Takahashi, O., Otsuka, Y., et al., Simultaneous middle and upper atmosphere radar and ionospheric sounder observations of midlatitude E region irregularities and sporadic E layer, J. Geophys. Res., 2002, vol. 107, no. A10, 1275. https://doi.org/10.1029/2001JA900176

    Article  Google Scholar 

  34. 34

    Yokoyama, T., Yamamoto, M., Fukao, S., and Cosgrove, R.B., Three-dimensional simulation on generation of polarization electric field in the midlatitude E‑region ionosphere, J. Geophys. Res., 2004, vol. 109, A01309. https://doi.org/10.1029/2003JA010238

    ADS  Article  Google Scholar 

  35. 35

    Kelley, M.C., The Earth’s Ionosphere: Plasma Physics and Electrodynamics, San Diego, Calif.: Academic Press, 2009.

    Google Scholar 

  36. 36

    Nygren, T., Jalonen, L., Oksman, J., and Turunen, T., The role of electric field and neutral wind direction in the formation of sporadic E-layers, J. Atmos. Terr. Phys., 1984, vol. 46, pp. 373–381.

    ADS  Article  Google Scholar 

  37. 37

    Turunen, T., Nygren, T., and Huuskonen, A., Nocturnal high-latitude E-region in winter during extremely quiet conditions, J. Atmos. Terr. Phys., 1993, vol. 55, pp. 783–795.

    ADS  Article  Google Scholar 

  38. 38

    Bristow, W.A. and Watkins, B.J., Numerical simulation of the formation of thin ionization layers at high latitudes, Geophys. Res. Lett., 1991, vol. 18, pp. 404–407.

    ADS  Article  Google Scholar 

  39. 39

    Bristow, W.A. and Watkins, B.J., Incoherent scatter observations of thin ionization layers at Sondrestrom, J. Atmos. Terr. Phys., 1993, vol. 55, pp. 873–894.

    ADS  Article  Google Scholar 

  40. 40

    Kirkwood, S. and von Zahn, U., On the role of auroral electric fields in the formation of low altitude sporadic-E and sudden sodium layers, J. Atmos. Terr. Phys., 1991, vol. 53, pp. 389–407.

    ADS  Article  Google Scholar 

  41. 41

    Kirkwood, S. and von Zahn, U., Formation mechanisms for lowaltitude Es and their relationship with neutral Fe layers: Results from the metal campaign, J. Geophys. Res., 1993, vol. 98, pp. 21549–21561.

    ADS  Article  Google Scholar 

  42. 42

    Lehmacher, G.A., Larsen, M.F., and Croskey, C.L., Observation of electron biteout regions below sporadic E layers at polar latitudes, Ann. Geophys., 2015, vol. 33, pp. 371–380. https://doi.org/10.5194/angeo-33-371-2015

    ADS  Article  Google Scholar 

  43. 43

    Cox, R.M. and Plane, J.M.C., An ion–molecule mechanism for the formation of neutral sporadic Na layers, J. Geophys. Res., 1998, vol. 103, no. D6, pp. 6349–6359.

    ADS  Article  Google Scholar 

  44. 44

    Hunten, D.M., Turco, R.P., and Toon, O.B., Smoke and dust particles of meteoric origin in the mesosphere and stratosphere, J. Atmos. Sci., 1980, vol. 37, pp. 1342–1357.

    ADS  Article  Google Scholar 

  45. 45

    Heinselman, C.J., Thayer, J.P., and Watkins, B.J., A high-latitude observation of sporadic sodium and sporadic E-layer formation, Geophys. Res. Lett., 1998, vol. 25, pp. 3059–3062.

    ADS  Article  Google Scholar 

  46. 46

    Igarashi, K., Pavelyev, A.G., Hocke, K., et al., Observation of wave structures in the upper atmosphere by means of radio holographic analysis of the RO data, Adv. Space Res., 2001, vol. 27, pp. 1321–1327.

    ADS  Article  Google Scholar 

  47. 47

    Pavelyev, A.G., Liou, Y.A., Wickert, J., et al., New applications and advances of the GPS radio occultation technology as recovered by analysis of the FORMOSAT-3/COSMIC and CHAMP data-base, in New Horizons in Occultation Research: Studies in Atmosphere and Climate, Steiner, A., Pirscher, B., Foelsche, U., and Kirchengast, G., Eds., Berlin–Heidelberg: Springer, 2009. https://doi.org/10.1007/978-3-642-00321_9

    Google Scholar 

  48. 48

    Pavelyev, A.G., Liou, Y.A., Zhang, K., et al., Identification and localization of layers in the ionosphere using the eikonal and amplitude of radio occultation signals, Atmos. Meas. Tech., 2012, vol. 5, no. 1, pp. 1–16. https://doi.org/10.5194/amt-5-1-2012

    Article  Google Scholar 

  49. 49

    Pavelyev, A.G., Liou, Y.A., Matyugov, S.S., et al., Application of the locality principle to radio occultation studies of the Earth’s atmosphere and ionosphere, Atm-os. Meas. Tech., 2015, vol. 8, no. 7, pp. 2885–2899. https://doi.org/10.5194/amt-8-2885-2015

    Article  Google Scholar 

  50. 50

    Gubenko, V.N., Pavelyev, A.G., Kirillovich, I.A., and Liou, Y.-A., Case study of inclined sporadic E layers in the Earth’s ionosphere observed by CHAMP/GPS radio occultations: Coupling between the tilted plasma layers and internal waves, Adv. Space Res., 2018, vol. 61, no. 7, pp. 1702–1716. https://doi.org/10.1016/j.asr.2017.10.001

    ADS  Article  Google Scholar 

  51. 51

    Yue, X., Schreiner, W.S., Zeng, Z., et al., Case study on complex sporadic E layers observed by GPS radio occultations, Atmos. Meas. Tech., 2015, vol. 8, pp. 225–236. https://doi.org/10.5194/amt-8-225-2015

    Article  Google Scholar 

  52. 52

    Zeng, Z. and Sokolovskiy, S., Effect of sporadic E cloud on GPS radio occultation signal, Geophys. Res. Lett., 2010, vol. 37, L18817. https://doi.org/10.1029/2010GL044561

    ADS  Article  Google Scholar 

  53. 53

    Mathews, J.D., Sporadic E: Current views and recent progress, J. Atmos. Sol.-Terr. Phys., 1998, vol. 60, no. 4, pp. 413–435. https://doi.org/10.1016/S1364-6826(97)00043-6

    ADS  Article  Google Scholar 

  54. 54

    Hines, C.O., Internal atmospheric gravity waves at ionospheric heights, Can. J. Phys., 1960, vol. 38, pp. 1441–1481.

    ADS  Article  Google Scholar 

  55. 55

    Gossard, E.E. and Hooke, W.H., Waves in the Atmosphere, Amsterdam–Oxford–New York: Elsevier, 1975.

    Google Scholar 

  56. 56

    Otsuka, Y., Shiokawa, K., Ogawa, T., et al., Spatial relationship of nighttime medium-scale traveling ionospheric disturbances and f region field-aligned irregularities observed with two spaced all-sky airglow imagers and the middle and upper atmosphere radar, J. Geophys. Res., 2009, vol. 114, A05302. https://doi.org/10.1029/2008JA013902

    ADS  Article  Google Scholar 

  57. 57

    Tsunoda, R.T. and Cosgrove, R.B., Coupled electrodynamics in the nighttime midlatitude ionosphere, Geophys. Res. Lett., 2001, vol. 8, pp. 4171–4174.

    ADS  Article  Google Scholar 

  58. 58

    Kato, S., Reddy, C.A., and Matsushita, S., Possible hydromagnetic coupling between the perturbations of the neutral and ionized atmosphere, J. Geophys. Res., 1970, vol. 75, pp. 2540–2550.

    ADS  Article  Google Scholar 

  59. 59

    Chimonas, G. and Axford, W.I., Vertical movement of temperate-zone sporadic E layers, J. Geophys. Res., 1968, vol. 73, pp. 111–117.

    ADS  Article  Google Scholar 

  60. 60

    Chimonas, G., Enhancement of sporadic E by horizontal transport within the layer, J. Geophys. Res., 1971, vol. 76, pp. 4578–4586.

    ADS  Article  Google Scholar 

  61. 61

    Whitehead, J.D., Ionization disturbances caused by gravity waves in the presence of an electrostatic field and background wind, J. Geophys. Res., 1971, vol. 76, pp. 238–241.

    ADS  Article  Google Scholar 

  62. 62

    Gubenko, V.N., Pavelyev, A.G., and Andreev, V.E., Determination of the intrinsic frequency and other wave parameters from a single vertical temperature or density profile measurement, J. Geophys. Res., 2008, vol. 113, D08109. https://doi.org/10.1029/2007JD008920

    ADS  Article  Google Scholar 

  63. 63

    Gubenko, V.N., Pavelyev, A.G., Salimzyanov, R.R., and Pavelyev, A.A., Reconstruction of internal gravity wave parameters from radio occultation retrievals of vertical temperature profiles in the Earth’s atmosphere, Atmos. Meas. Tech., 2011, vol. 4, no. 10, pp. 2153–2162. https://doi.org/10.5194/amt-4-2153-2011

    Article  Google Scholar 

  64. 64

    Gubenko, V.N., Pavelyev, A.G., Salimzyanov, R.R., and Andreev, V.E., A method for determination of internal gravity wave parameters from a vertical temperature or density profile measurement in the Earth’s atmosphere, Cosmic Res., 2012, vol. 50, no. 1, pp. 21–31.

    ADS  Article  Google Scholar 

  65. 65

    Gubenko, V.N., Kirillovich, I.A., and Pavelyev A.G. Characteristics of internal waves in the Martian atmosphere obtained on the basis of an analysis of vertical temperature profiles of the Mars Global Surveyor mission, Cosmic Res., 2015, vol. 53, no. 2, pp. 133–142. https://doi.org/10.1134/S0010952515020021

    ADS  Article  Google Scholar 

  66. 66

    Gubenko, V.N. and Kirillovich, I.A., Diagnostics of internal atmospheric wave saturation and determination of their characteristics in Earth’s stratosphere from radiosonde measurements, Sol.-Terr. Phys., 2018, vol. 4, no. 2, pp. 41–48. https://doi.org/10.12737/stp-42201807

    Article  Google Scholar 

  67. 67

    Gubenko, V.N., Kirillovich, I.A., Pavelyev, A.G., and Andreev, V.E., Detection of saturated internal gravity waves in the Martian atmosphere and reconstruction of their characteristics, Izv. Vyssh. Uchebn. Zaved., Fiz., 2016, vol. 59, no. 12-2, pp. 46–49.

  68. 68

    Gubenko, V.N., Kirillovich, I.A., Liou, I.-A., and Pavelyev, A.G., Monitoring of the activity of internal gravity waves in the atmosphere of the Arctic and Antarctic, Izv. Vyssh. Uchebn. Zaved., Fiz., 2016, vol. 59, no. 12-3, pp. 80–85.

  69. 69

    MacDougall, J.W., Jayachandran, P.T., and Plane, J.M.C., Polar cap sporadic-E: Part 1. Observations, J. Atmos. Sol.-Terr. Phys., 2000, vol. 62, pp. 1155–1167.

    ADS  Article  Google Scholar 

  70. 70

    MacDougall, J.W., Plane, J.M.C., and Jayachandran, P.T., Polar cap sporadic-E: Part 2. Modeling, J. Atmos. Sol.-Terr. Phys., 2000, vol. 62, pp. 1169–1176.

    ADS  Article  Google Scholar 

  71. 71

    Kirkwood, S. and Collis, P.N., Gravity wave generation of simultaneous auroral sporadic-E layers and sudden neutral sodium layers, J. Atmos. Terr. Phys., 1989, vol. 51, no. 4, pp. 259–269.

    ADS  Article  Google Scholar 

Download references

Funding

This study was supported by a state task and was partially supported by the Russian Foundation for Basic Research (RFBR project no. 19-02-00083 A) and program no. 12 of the Presidium of the Russian Academy of Sciences.

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. N. Gubenko.

Additional information

Translated by N. Topchiev

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gubenko, V.N., Kirillovich, I.A. Association of Inclined Sporadic E-Layers and Small-Scale Atmospheric Waves in Earth’s Ionosphere. Cosmic Res 58, 139–149 (2020). https://doi.org/10.1134/S0010952520030028

Download citation