Skip to main content
Log in

Structure of Current Sheets with Quasi-Adiabatic Dynamics of Particles in the Solar Wind

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

Within the self-consistent hybrid model based on the quasi-adiabatic approximation of the proton dynamics, a fine structure of strong current sheets (SCSs) in the solar wind has been investigated, including the heliospheric current sheet. The motion of electrons is fast and considered in the Boltzmann approximation. The simulation results have been shown that the SCS profiles have a multiscale enclosed structure with a narrow central current sheet that is enclosed in a wider sheet, similar to the heliospheric current sheet surrounded by the plasma sheet. The features of the SCS structure are determined by the relative contributions of the current of demagnetized protons in serpentine orbits and drift currents of electrons. The model predicts and describes the properties of SCSs observed by spacecraft. It has been shown that the multiscale structure of current sheets is an inherent intrinsic property of current sheets in the solar wind.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Balogh, A. and Jokipii, J.R., The heliospheric magnetic field and its extension to the inner heliosheath, Space Sci. Rev., 2009, vol. 143, pp. 85–110.

    Article  ADS  Google Scholar 

  2. Parker, E.N., Dynamics of the interplanetary gas and magnetic fields, Astrophys. J., 1958, vol. 128, pp. 664–676.

    Article  ADS  Google Scholar 

  3. Winterhalter, D., Smith, E.J., Burton, M.E., et al., The heliospheric plasma sheet, J. Geophys. Res., 1994, vol. 99, pp. 6667–6680.

    Article  ADS  Google Scholar 

  4. Smith, E.J., The heliospheric current sheet, J. Geophys. Res., 2001, vol. 106, 15819.

    Article  ADS  Google Scholar 

  5. Zharkova, V.V. and Khabarova, O.V., Particle dynamics in the reconnecting heliospheric current sheet: Solar wind data versus three-dimensional particle-in-cell simulations, Astrophys. J., 2012, vol. 752, no. 1, id 35.

  6. Liu, Y.C.-M., Huang, J., Wang, C., et al., A statistical analysis of heliospheric plasma sheets, heliospheric current sheets, and sector boundaries observed in situ by STEREO, J. Geophys. Res., 2014, vol. 119, no. 11, pp. 8721–8732.

    Article  Google Scholar 

  7. Behannon, K.W., Neubauer, F.M., and Barnstorf, H., Fine-scale characteristics of interplanetary sector boundaries, J. Geophys. Res., 1981, vol. 86, pp. 3273–3287.

    Article  ADS  Google Scholar 

  8. Zharkova, V.V. and Khabarova, O.V., Additional acceleration of solar-wind particles in current sheets of the heliosphere, Ann. Geophys., 2015, vol. 33, no. 4, pp. 457–470.

    Article  ADS  Google Scholar 

  9. Crooker, N.U., Siscoe, G.L., Shodhan, S., et al., Multiple heliospheric current sheets and coronal streamer belt dynamics, J. Geophys. Res., 1993, vol. 98, pp. 9371–9381.

    Article  ADS  Google Scholar 

  10. Crooker, N.U., Huang, C.-L., Lamassa, S.M., et al., Heliospheric plasma sheets, J. Geophys. Res., 2004, vol. 109, A03107.

    ADS  Google Scholar 

  11. Blanco, J.J., Rodriguez-Pacheco, J., Hidalgo, M.A., et al., Analysis of the heliospheric current sheet fine structure: Single or multiple current sheets, J. Atmos. Sol.-Terr. Phys., 2006, vol. 68, pp. 2173–2181.

    Article  ADS  Google Scholar 

  12. Merkin, V.G., Lyon, J.G., McGregor, S.L., et al., Disruption of a heliospheric current sheet fold, Geophys. Res. Lett., 2011, vol. 38, L14107.

    Article  ADS  Google Scholar 

  13. Xu, F., Li, G., Zhao, L., Zhang, Y., et al., Angular distribution of solar wind magnetic field vector at 1 AU, Astrophys. J., 2015, vol. 801, no. 1, id 58.

  14. Pereira, B.F., Philip, B.J., and Girish, T.E., On the nature of IMF polarity dependent asymmetries in solar wind plasma properties during the minimum of sunspot cycles 23 and 24, J. Atmos. Sol.-Terr. Phys., 2016, vol. 140, pp. 34–40.

    Article  ADS  Google Scholar 

  15. Khabarova, O., Zank, G.P., Li, G., et al., Small-scale magnetic islands in the solar wind and their role in particle acceleration. I. Dynamics of magnetic islands near the heliospheric current sheet, Astrophys. J., 2015, vol. 808, no. 2, id 181.

  16. Khabarova, O.V., Zank, G.P., Li, G., et al., Small-scale magnetic islands in the solar wind and their role in particle acceleration. II. Particle energization inside magnetically confined cavities, Astrophys. J., 2016, vol. 827, no. 2, id 122.

  17. Pudovkin, M.I., Runov, A.V., Zaitseva, S.A., et al., Electric currents at IMF sector boundaries, Sol. Phys., 1999, vol. 184, no. 1, pp. 173–186.

    Article  ADS  Google Scholar 

  18. Simunac, K.D.C., Galvin, A.B., Farrugia, C.J., et al., The heliospheric plasma sheet observed in situ by three spacecraft over four solar rotations, Sol. Phys., 2012, vol. 281, no. 1, pp. 423–447.

    ADS  Google Scholar 

  19. Klein, L. and Burlaga, L.F., Interplanetary sector boundaries 1971–1973, J. Geophys. Res., 1980, vol. 85, no. A5, pp. 2269–2276.

    Article  ADS  Google Scholar 

  20. Bavassano, B., Woo, R., and Bruno, R., Heliospheric plasma sheet and coronal streamers, Geophys. Res. Lett., 1997, vol. 24, no. 13, pp. 1655–1658.

    Article  ADS  Google Scholar 

  21. Roberts, D.A., Keiter, P.A., and Goldstein, M.L., Origin and dynamics of the heliospheric streamer belt and current sheet, J. Geophys. Res., 2005, vol. 110, A06102.

    ADS  Google Scholar 

  22. Eselevich, M.V. and Eselevich, V.G., Streamer belt in the solar corona and the Earth’s orbit, Geomagn. Aeron. (Engl. Transl.), 2007, vol. 47, no. 3, pp. 291–298.

  23. Milovanov, A.V. and Zelenyi, L.M., Development of fractal structure in the solar wind and distribution of magnetic field in the photosphere, in Solar System Plasmas in Space and Time, Burch, J.L. and Waite, J.H., Eds.,Washington, D.C.: AGU, 1994, vol. 84, pp. 43–52.

    Google Scholar 

  24. Harrison, R.A., Davis, Ch.J., Eyles, Ch.J., et al., First imaging of coronal mass ejections in the heliosphere viewed from outside the Sun–Earth line, Sol. Phys., 2008, vol. 247, pp. 171–193.

    Article  ADS  Google Scholar 

  25. Plotnikov, I., Rouilllard, A.P., Davies, J.A., et al., Long-term tracking of corotating density structures using heliospheric imaging, Sol. Phys., 2016, vol. 291, no. 6, pp. 1853–1875.

    Article  ADS  Google Scholar 

  26. Gosling, J.T., Magnetic reconnection in the heliosphere: New insights from observations in the solar wind universal heliophysical processes, Proceedings IAU Symposium No. 257, Gopalswamy, N. and Webb, D.F., Eds., International Astronomical Union, 2009. doi 10.1017/ S1743921309029597

  27. Khabarova, O., Zank, G.P., Li, G., et al., Small-scale magnetic islands in the solar wind and their role in particle acceleration. I. Dynamics of magnetic islands near the heliospheric current sheet, Astrophys. J., 2015, vol. 808, no. 2, id 181.

  28. Ruffenach, A., Lavraud, B., Owens, M.J., et al., Multispacecraft observation of magnetic cloud erosion by magnetic reconnection during propagation, J. Geophys. Res., 2012, vol. 117, A09101.

    Article  ADS  Google Scholar 

  29. Gosling, J.T., Asbridge, J.R., Bame, S.J., et al., Noncompressive density enhancements in the solar wind, J. Geophys. Res., 1977, vol. 82, no. 32, pp. 5005–5010.

    Article  ADS  Google Scholar 

  30. Borrini, G., Wilcox, J.M., Gosling, J.T., et al., Solar wind helium and hydrogen structure near the heliospheric current sheet: A signal of coronal streamers at 1 AU, J. Geophys. Res., 1981, vol. 86, no. A6, pp. 4565–4573.

    Article  ADS  Google Scholar 

  31. Feldman, W.C., Asbridge, J.R., Bame, S.J., et al., The solar origins of solar wind interstream flows: Near-equatorial coronal streamers, J. Geophys. Res., 1981, vol. 86, no. A7, pp. 5408–5416.

    Article  ADS  Google Scholar 

  32. Wang, S., Liu, Y.F., and Zheng, H.N., Magnetic reconnection in multiple heliospheric current sheets, Sol. Phys., 1997, vol. 173, no. 2, pp. 409–426.

    Article  ADS  Google Scholar 

  33. Forsyth, R.J., Rees, A., Balogh, A., et al., Magnetic field observations of transient events at Ulysses, 1996–2000, Space Sci. Rev., 2001, vol. 97, nos. 1–4, pp. 217–220.

    Article  ADS  Google Scholar 

  34. Foullon, C., Owen, C.J., Dasso, S., et al., The apparent layered structure of the heliospheric current sheet: Multi-spacecraft observations, Sol. Phys., 2009, vol. 259. nos. 1–2, pp. 389–416.

    Article  ADS  Google Scholar 

  35. Riley, P., Linker, J.A., and Mikić, Z., Modeling the heliospheric current sheet: Solar cycle variations, J. Geophys. Res., 2002, vol. 107, no. A7, pp. SSH 8-1–SSH 8-6.

  36. Kislov, R.A., Khabarova, O., and Malova, H.V., A new stationary analytical model of the heliospheric current sheet and the plasma sheet, J. Geophys. Res., 2015, vol. 120, pp. 8210–8228.

    Article  Google Scholar 

  37. Schatten, K.H., Large-scale properties of the interplanetary magnetic field, in Solar Wind, Sonett, C.P., Coleman, P.J., and Wilcox, J.M., Eds., Washington, D.C.: National Aeronautics and Space Administration, Scientific and Technical Information Office, 1972, p. 65.

    Google Scholar 

  38. Israelevich, P.L., Gombosi, T.I., Ershkovich, A.I., et al., MHD simulation of the three-dimensional structure of the heliospheric current sheet, Astron. Astrophys., 2001, vol. 376, no. 1, pp. 288–291.

    Article  ADS  Google Scholar 

  39. Schwadron, N.A., An explanation for strongly underwound magnetic field in co-rotating rarefaction regions and its relationship to footpoint motion on the sun, Geophys. Res. Lett., 2002, vol. 29, no. 14, pp. 8-1–8-4.

  40. Echim, M.M., Lemaire, J., and Lie-Svendsen, Ø., A review on solar wind modeling: Kinetic and fluid aspects, Surv. Geophys., 2011, vol. 32, no. 1, pp. 1–70.

    Article  ADS  Google Scholar 

  41. Suess, S.T., Ko, Y.-K., von Steiger, R., and Moore, R.L., Quiescent current sheets in the solar wind and origins of slow wind, J. Geophys. Res., 2009, vol. 114, A04103. doi 10.1029/2008JA013704

    Article  ADS  Google Scholar 

  42. Šafránková, J., Němeček, Z., Cagaš, P., et al., Short-scale variations of the solar wind helium abundance, Astrophys. J., 2013, vol. 778, no. 1, id 25.

  43. Zelenyi, L.M., Malova, H.V., Popov, V.Yu., et al., “Matreshka” model of multilayered current sheet, Geophys. Res. Lett., 2006, vol. 33, no. 5, L05105.

    ADS  Google Scholar 

  44. Zelenyi, L.M., Malova, H.V., Popov, V.Yu., et al., Nonlinear equilibrium structure of thin currents sheets: influence of electron pressure anisotropy, Nonlinear Processes Geophys., 2004, vol. 11, pp. 579–587.

    Article  ADS  Google Scholar 

  45. Malova, H.V., Popov, V.Y., Grigorenko, E.E., et al., Evidence for quasi-adiabatic motion of charged particles in strong current sheets in the solar wind, Astrophys. J., 2017, vol. 834, id 34.

  46. Harris, E.G., On a plasma sheath separating regions of oppositely directed magnetic field, Nuovo Cimento, 1962, vol. 23, no. 1, pp. 115–121.

    Article  MATH  Google Scholar 

  47. Petrukovich, A.A., Artemyev, A.V., Malova, H.V., et al., Embedded current sheets in the Earth’s magnetotail, J. Geophys. Res., 2011, vol. 116, A00I25.

    Article  Google Scholar 

  48. Sitnov, M.I., Zelenyi, L.M., Malova, H.V., et al., Thin current sheet embedded within a thicker plasma sheet: Self-consistent kinetic theory, J. Geophys. Res., 2000, vol. 105, р. 13029.

    Article  ADS  Google Scholar 

  49. Zelenyi, L., Sitnov, M.I., Malova, H.V., et al., Thin and superthin ion current sheets. Quasi-adiabatic and nonadiabatic models, Nonlinear Processes Geophys., 2000, vol. 7, pp. 127–139.

    Article  ADS  Google Scholar 

  50. Büchner, J. and Zelenyi, L.M., Regular and chaotic charged particle motion in magnetotaillike field reversals. 1. Basic theory of trapped motion, J. Geophys. Res., 1989, vol. 94, no. A9, pp. 11821–11842.

    Article  ADS  Google Scholar 

  51. Chew, G.F., Goldberger, M.L., and Low, F.E., The Boltzmann equation and the one-fluid hydromagnetic equations in the absence of particle collisions, Proc. R. Soc. London, Ser. A, 1956, vol. 236, no. 1204, pp. 119–135.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Artemyev, A.V., Petrukovich, A.A., Nakamura, R., et al., Proton velocity distribution in thin current sheets: Cluster observations and theory of transient trajectories, J. Geophys. Res., 2010, vol. 115, A12255.

    Article  ADS  Google Scholar 

  53. Malova, H.V., Popov, V.Yu., Grigorenko, E.E., et al., Evidence for quasi-adiabatic motion of charged particles in strong current sheets in the solar wind, Astrophys. J., 2017, vol. 834, no. 1, id 34.

  54. Bykov, A.A., Zelenyi, L.M., and Malova, Kh.V., Triple splitting of a thin current sheet-a new type of plasma equilibrium, Plasma Phys. Rep., 2008, vol. 34, no. 2, pp. 128–134.

    Article  ADS  Google Scholar 

  55. Greco, A., Taktakishvili, A.L., Zimbardo, G., et al., Ion dynamics in the near-Earth magnetotail: Magnetic turbulence versus normal component of the average magnetic field, J. Geophys. Res., 2002, vol. 107, no. A10, pp. SMP 1-1–SMP 1-16.

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation, project no. 14-12-00824. O.V. Khabarova acknowledges the support of ISSI within the International Team 405 “Current Sheets, Turbulence, Structures, and Particle Acceleration in the Heliosphere”, and the Russian Foundation for Basic Research (project nos. 16-02-00479, 17-02-01328, and 17-02-00300). E.E. Grigorenko acknowledges the support of the RFBR (project no. 16-52-16009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kh. V. Malova.

Additional information

Translated by N. Topchiev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malova, K.V., Popov, V.Y., Khabarova, O.V. et al. Structure of Current Sheets with Quasi-Adiabatic Dynamics of Particles in the Solar Wind. Cosmic Res 56, 462–470 (2018). https://doi.org/10.1134/S0010952518060060

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952518060060

Keywords

Navigation