Skip to main content
Log in

Design of Interplanetary Transfers with Passive Gravity Assists and Deep Space Maneuvers

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

In the paper, the problem of designing interplanetary trajectories with several swing-bys and deep-space maneuvers is solved using the method of virtual trajectories developed by the authors. The algorithms for the calculation of both heliocentric and planetocentric trajectory arcs are presented, including the case of resonant trajectories. The results of applying the method of virtual trajectories to the problem of designing an interplanetary transfer to Jupiter are given and compared with the baseline trajectories for the Juno, Europa Clipper, and Laplace missions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Di Lizia, P., Radice, G., Izzo, D., and Vasile, M., On the solution of interplanetary trajectory design problems by global optimisation methods, in Proc. Global Optimisation Workshop, Almería, Spain, 2005, pp. 159–164.

    Google Scholar 

  2. Okhotsimskii D.E. and Sikharulidze, Yu.G., Osnovy mekhaniki kosmicheskogo poleta (Basics of Space Flight Mechanics), Moscow: Nauka, 1990.

    Google Scholar 

  3. Levantovskii, V.I., Mekhanika kosmicheskogo poleta v elementarnom izlozhenii (Elementary Space Flight Mechanics), Moscow: Nauka, 1980.

    Google Scholar 

  4. Hughes, G. and McInnes, C.R., Solar sail hybrid trajectory optimisation, Adv. Astronaut. Sci., 2001, vol. 109, pp. 2369–2380.

    Google Scholar 

  5. Rogata, P., Di Sotto, E., Graziano, M., and Graziani, F., Guess value for interplanetary transfer design through genetic algorithms, in Proc. 13th AAS/AIAA Space Flight Mechanics Meeting, Ponce, Puerto Rico, 2003, AAS03-140.

    Google Scholar 

  6. Dachwald, B., Optimization of solar sail interplanetary trajectories using evolutionary neurocontrol, J. Guid. Control Dyn., 2004, vol. 27, no. 1, pp. 66–72.

    Article  ADS  Google Scholar 

  7. Wirthman, D.J., Park, S.Y., and Vadali, S.R., Trajectory optimization using parallel shooting method on parallel computer, J. Guid. Control Dyn., 1995, vol. 18, no. 2, pp. 377–379.

    Article  ADS  Google Scholar 

  8. Hartmann, J.W., Coverstone-Carroll, V.L., and Williams, S.N., Optimal interplanetary spacecraft trajectories via a Pareto genetic algorithm, J. Astronaut. Sci., 1998, vol. 46, no. 3, pp. 267–282.

    MathSciNet  Google Scholar 

  9. Vasile, M., A global approach to optimal space trajectory design, Adv. Astronaut. Sci., 2003, vol. 114, pp. 621–640.

    Google Scholar 

  10. Sentinella, M.R., Comparison and integrated use of differential evolution and genetic algorithms for space trajectory optimisation, in Proc. IEEE Congress on Evolutionary Computation, Singapore, 2007.

    Google Scholar 

  11. Storn, R.M. and Price, K.V., Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces, J. Global Optim., 1997, vol. 11, pp. 341–359.

    Article  MathSciNet  MATH  Google Scholar 

  12. Storn, R.M., Price, K.V., and Lampinen, J.A., Differential Evolution: A Practical Approach to Global Optimization, Springer, Berlin, 2005.

    MATH  Google Scholar 

  13. Kennedy, J. and Eberhart, R., Particle swarm optimization, in Proc. IEEE International Conference on Neural Networks, Perth, Australia, 1995.

    Google Scholar 

  14. Fedotov, G.G., Optimization of flight trajectories of a spacecraft with electric propulsion using the gravitational maneuver, Cosmic Res., 2004, vol. 42, no. 4, pp. 389–397.

    Article  ADS  Google Scholar 

  15. Grigoriev, I.S. and Grigoriev, K.G., The use of solutions to problems of spacecraft trajectory optimization in impulse formulation when solving the problems of optimal control of trajectories of a spacecraft with limited thrust engine: I, Cosmic Res., 2007, vol. 45, no. 4, pp. 339–347.

    Article  ADS  Google Scholar 

  16. Petukhov, V.G., Optimization of interplanetary trajectories for spacecraft with ideally regulated engines using the continuation method, Cosmic Res., 2008, vol. 46, no. 3, pp. 219–232.

    Article  ADS  Google Scholar 

  17. Lancaster, E.R. and Blanchard, R.C., A unified form of Lambert’s theorem, NASA technical note TND-5368, 1969.

    Google Scholar 

  18. Gooding, R.H., A procedure for the solution of Lambert’s orbital boundary-value problem, Celestial Mech. Dyn. Astron., 1990, vol. 48, no. 2, pp. 145–165.

    MATH  ADS  Google Scholar 

  19. Kowalkowski, T.D., Johannesen, J.R., and Lam, T., Launch period development for the Juno Mission to Jupiter, Proc. AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Honolulu, Hawaii, 2008, AIAA2008–7369.

    Google Scholar 

  20. Buffington, B., Trajectory design for the Europa Clipper mission concept, Proc. AIAA/AAS Astrodynamics Specialist Conference, San Diego, California, 2014, AIAA2014–4105.

    Google Scholar 

  21. Boutonnet, A. and Schoenmaekers, J., JUICE: Consolidated report on mission analysis (CReMA), ESA WP-578, no. 1, Darmstadt, Germany: ESA: 2012.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Shirobokov.

Additional information

Original Russian Text © M.G. Shirobokov, S.P. Trofimov, M.Yu. Ovchinnikov, 2018, published in Kosmicheskie Issledovaniya, 2018, Vol. 56, No. 4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirobokov, M.G., Trofimov, S.P. & Ovchinnikov, M.Y. Design of Interplanetary Transfers with Passive Gravity Assists and Deep Space Maneuvers. Cosmic Res 56, 317–330 (2018). https://doi.org/10.1134/S0010952518040044

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952518040044

Navigation