Cosmic Research

, Volume 56, Issue 2, pp 85–93 | Cite as

Investigations of the Background Stratospheric Aerosol Using Multicolor Wide-Angle Measurements of the Twilight Glow Background

  • O. S. Ugolnikov
  • I. A. Maslov


The first results of multiwave measurements of twilight background and the all-sky camera with a color (RGB) CCD matrix conducted in the spring and summer of 2016 in Central Russia (55.2° N, 37.5° E) have been discussed. The observations reveal the effect of aerosol scattering at heights of up to 35 km, which is substantially enhanced in the long-wave part of the spectrum (R band with an effective wavelength of 624 nm). An analysis of the behavior of the sky color during light period of twilight with allowance for the absorption by ozone in the Chappuis bands make it possible to restore the angular dependences of the intensity of the aerosol scattering of the light. This is used to determine the parameters of the lognormal distribution of aerosol particles over their sizes with a mean radius of 0.08 μm and a width of 1.5–1.6 for the stratospheric height interval.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Clark, J.E., The remarkable sunsets, Nature, 1883, vol. 29, pp. 130–131.Google Scholar
  2. 2.
    Lee, R., Jr. and Hernádez-Andrés, J., Measuring and modeling twilight’s purple light, Appl. Opt., 2003, vol. 42, pp. 445–457.ADSCrossRefGoogle Scholar
  3. 3.
    Gruner, P. and Kleinert, H., Die Dämmerungserscheinungen, Hamburg: Henri Grand, 1927, pp. 103–107.Google Scholar
  4. 4.
    Junge, C.E., Changnon, C.W., and Manson, J.E., Stratospheric aerosols, J. Meteorol., 1961, vol. 18, pp. 81–108.CrossRefGoogle Scholar
  5. 5.
    Rosen, J.M., The boiling point of stratospheric aerosols, J. Appl. Meteorol., 1971, vol. 10, pp. 1044–1046.ADSCrossRefGoogle Scholar
  6. 6.
    Deshler, T., Hervig, M.E., Hofmann, D.J., Rosen, J.M., and Liley, J.B., Thirty years of in situ stratospheric aerosol size distribution measurements from Laramie, Wyoming (41° N), using balloon-borne instruments, J. Geophys. Res., 2003, vol. 108, no. D5, pp. 4167–4179.CrossRefGoogle Scholar
  7. 7.
    Jager, H. and Deshler, T., Lidar backscatter to extinction, mass and area conversions for stratospheric aerosols based on midlatitude balloonborne size distribution measurements, Geophys. Res. Lett., 2002, vol. 29, pp. 1929–1932.ADSCrossRefGoogle Scholar
  8. 8.
    Bauman, J.J., Russell, P.B., Geller, M.A., and Hamill, P., A stratospheric aerosol climatology from SAGE IIand CLAES measurements: 2. Results and comparisons, 1984–1999, J. Geophys. Res., 2003, vol. 108, no. D13, pp. 4383–4412.Google Scholar
  9. 9.
    Hansen, J., Lacis, A., Ruedy, R., and Sato, M., Potential climate impact of the Mount Pinatubo eruption, Geophys. Res. Lett., 1992, vol. 19, pp. 215–218.ADSCrossRefGoogle Scholar
  10. 10.
    Hofmann, D.J. and Solomon, S., Ozone destruction through heterogeneous chemistry following the eruption of El Chichon, J. Geophys. Res., 1989, vol. 94, pp. 5029–5041.ADSCrossRefGoogle Scholar
  11. 11.
    Brock, C.A., Hamill, P., Wilson, J.C., Jonsson, H.H., and Chan, K.R., Particle formation in the upper tropical troposphere—A source of nuclei for the stratospheric aerosol, Science, 1995, vol. 270, pp. 1650–1653.ADSCrossRefGoogle Scholar
  12. 12.
    Hofmann, D.J. and Rosen, J.M., Stratospheric sulfuric acid layer: Evidence for an anthropogenic component, Science, 1980, vol. 208, pp. 1368–1370.ADSCrossRefGoogle Scholar
  13. 13.
    Solomon, S., Daniel, J.S., Neely, R.R., III., Vernier, J.-P., Dutton, E.G., and Thomason, L.W., The persistently variable “background” stratospheric aerosol layer and global climate change, Science, 2011, vol. 333, pp. 866–870.ADSCrossRefGoogle Scholar
  14. 14.
    Hinds, W.C., Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, New York: John Wiley and Sons, 1999.Google Scholar
  15. 15.
    Zuev, V.V., Burlakov, V.D., Dolgii, S.I., and Nevzorov, A.V., Anomalous aerosol scattering in the atmosphere over Tomsk in the fall–winter period of 2006–2007, Opt. Atmos. Okeana, 2007, vol. 20, no. 6, pp. 524–530.Google Scholar
  16. 16.
    Burlakov, V.D., Dolgii, S.I., and Nevzorov, A.V., Lidar observations of stratosphere aerosol disturbances over Tomsk (56.5° N, 85.0° E) during the 2006–2010 volcanic activity, Opt. Atmos. Okeana, 2011, vol. 24, no. 12, pp. 1031–1040.Google Scholar
  17. 17.
    Thomason, L.W., Burton, S.P., Luo, B.-P., and Peter, T., SAGE IImeasurements of stratospheric aerosol properties at non-volcanic levels, Atmos. Chem. Phys. Discuss., 2007, vol. 7, pp. 6959–6997.ADSCrossRefGoogle Scholar
  18. 18.
    Bourassa, A.E., Degenstein, D.A., and Llewellyn, E.J., Retrieval of stratospheric aerosol size information from OSIRIS limb scattered sunlight spectra, Atmos. Chem. Phys. Discuss., 2008, vol. 8, pp. 4001–4016.ADSCrossRefGoogle Scholar
  19. 19.
    Von Zahn, U.G., von Cossart, G., Fiedler, J., et al,, The ALOMAR Rayleigh/Mie/Raman lidar: Objectives, configuration, and performance, Ann. Geophys., 2000, vol. 18, pp. 815–833.ADSCrossRefGoogle Scholar
  20. 20.
    Jumelet, J., Bekki, S., David, C., and Keckhut, P., Statistical estimation of stratospheric particle size distribution by combining optical modelling and lidar scattering measurements, Atmos. Chem. Phys., 2008, vol. 8, pp. 5435–5448.ADSCrossRefGoogle Scholar
  21. 21.
    Ugolnikov, O.S. and Maslov, I.A., Studies of the stratosphere aerosol layer based on polarization measurements of the twilight sky, Cosmic Res., 2009, vol. 47, no. 3, pp. 198–207.ADSCrossRefGoogle Scholar
  22. 22.
    Ugolnikov, O.S., Twilight sky photometry and polarimetry: The problem of multiple scattering at the twilight time, Cosmic Res., 1999, vol. 37, no. 2, pp. 159–166.ADSGoogle Scholar
  23. 23.
    Ugolnikov, O.S. and Maslov, I.A., Multicolor polarimetry of the twilight sky: The role of multiple light scattering as a function of wavelength, Cosmic Res., 2002, vol. 40, no. 3, pp. 224–232.ADSCrossRefGoogle Scholar
  24. 24.
    Ugolnikov, O.S. and Maslov, I.A., Optical properties of the undisturbed mesosphere from wide-angle twilight sky polarimetry, Cosmic Res., 2013, vol. 51, no. 4, pp. 235–240.ADSCrossRefGoogle Scholar
  25. 25.
    Ugolnikov, O.S. and Maslov, I.A., Summer mesosphere temperature distribution from wide-angle polarization measurements of the twilight sky, J. Atmos. Sol.- Terr. Phys., 2013, vol. 105–106, pp. 8–14.CrossRefGoogle Scholar
  26. 26.
    Ugolnikov, O.S., Postylyakov, O.V., and Maslov, I.A., Effects of multiple scattering and atmospheric aerosol on the polarization of the twilight sky, J. Quant. Spectrosc. Radiat. Transfer, 2004, vol. 88, pp. 233–241.ADSCrossRefGoogle Scholar
  27. 27.
    EOS MLS Science Team, MLS/Aura Level 2 Temperature V003, Greenbelt, MD,USA, Goddard Earth Sciences Data and Information Services Center (GES DISC), 2011. ML 2T_V003.html.Google Scholar
  28. 28.
    EOS MLS Science Team, MLS/Aura Level 2 Ozone (O3) Mixing Ratio V003, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC), 2011. datacollection/ML 2O3_003.html.Google Scholar
  29. 29.
    Ugolnikov, O.S., Maslov, I.A., Kozelov, B.V., and Dlugach, J.M., Noctilucent cloud polarimetry: Twilight measurements in a wide range of scattering angles, Planet. Space Sci., 2016, vol. 125, pp. 105–113.ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Space ResearchRussian Academy of SciencesMoscowRussia
  2. 2.Sternberg Astronomical InstituteMoscow State UniversityMoscowRussia

Personalised recommendations