Skip to main content
Log in

On the Accuracy of the Conjugation of High-Orbit Satellites with Small-Scale Regions in the Ionosphere

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

The degree of uncertainty that arises when mapping high-orbit satellites of the Cluster type into the ionosphere using three geomagnetic field models (T89, T98, and T01) has been estimated. Studies have shown that uncertainty is minimal in situations when a satellite in the daytime is above the equatorial plane of the magnetosphere at the distance of no more than 5 RE from the Earth’s surface and is projected into the ionosphere of the northern hemisphere. In this case, the dimensions of the uncertainty region are about 50 km, and the arbitrariness of the choice of the model for projecting does not play a decisive role in organizing satellite support based on optical observations when studying such large-scale phenomena as, e.g., WTS, as well as heating experiments at the EISCAT heating facility for the artificial modification of the ionosphere and the generation of artificial fluctuations in the VLF band. In all other cases, the uncertainty in determining the position of the base of the field line on which the satellite is located is large, and additional information is required to correctly compare the satellite with the object in the ionosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Safargaleev, V.V., Sergienko, T.I., Safargaleev, A.V., and Kotikov, A.L., Magnetic and optical measurements and signatures of reconnection in the cusp and vicinity, Phys.-Usp., 2015, vol. 58, no. 6, pp. 612–620.

    Article  ADS  Google Scholar 

  2. Sergienko, T., Sandahl, I., Gustavsson, B., et al., A study of fine structure of diffuse aurora with ALISFAST measurements, Ann. Geophys., 2008, vol. 26, 3185. doi 10.5194/angeo-26-3185-2008

    Article  ADS  Google Scholar 

  3. Wright, D.M., Davies, J.A., Yeoman, T.K., et al., Detection of artificially generated ULF waves by the FAST spacecraft and its application to the “tagging” of narrow flux tubes, J. Geophys. Res., 2003, vol. 108, 1090. doi 10.1029/2002JA009483

    Google Scholar 

  4. Figueiredo, S., Marklund, G.T., Karlsson, T., et al., Temporal and spatial evolution of discrete auroral arcs as seen by Cluster, Ann. Geophys., 2005, vol. 23, pp. 2531–2557.

    Article  ADS  Google Scholar 

  5. Farrugia, C.I., Sandholt, P.E., and Burlaga, L.F., Auroral activity associated with Kelvin–Helmholtz instability at the inner edge of the low-latitude boundary layer, J. Geophys. Res., 1994, vol. 99, pp. 19403–19411.

    Article  ADS  Google Scholar 

  6. Golovchanskaya, I.V., Kornilov, I.A., and Kornilova, T.A., East–west type precursor activity prior to the auroral onset: Ground-based and THEMIS observations, J. Geophys. Res., 2015, vol. 120. doi 10.1002/ 2014JA020081

  7. Liu, J., Angelopoulos, V., Frey, H., et al., THEMIS observation of a substorm event on 04:35, 22 February 2008, Ann. Geophys., 2009, vol. 27, pp. 1831–1841.

    Article  ADS  Google Scholar 

  8. Yahnin, A.G., Despirak, I.V., Lubchich, A.A., et al., Indirect mapping of the source of the fast plasma flow reversal in the magnetospheric plasma sheet onto the auroral display, Ann. Geophys., 2006, vol. 24, no. 2, pp. 679–687.

    Article  ADS  Google Scholar 

  9. Shevchenko, I.G., Sergeev, V., Kubyshkina, M., et al., Estimation of magnetosphere–ionosphere mapping accuracy using isotropy boundary and THEMIS observations, J. Geophys. Res., 2010, vol. 115, A11206. doi 10.1029/2010JA015354

    Article  ADS  Google Scholar 

  10. Zhang, Q.-H., Dunlop, M.W., Holme, R., and Woodfield, E.E., Comparison of eight years magnetic field data from Cluster with Tsyganenko models in the inner magnetosphere, Ann. Geophys., 2010, vol. 28, no. 1, pp. 309–326.

    Article  ADS  Google Scholar 

  11. Ober, D.M., Maynard, N.C., Burke, W.J., et al., Mapping prenoon auroral structures to the ionosphere, J. Geophys. Res., 2000, vol. 105, no. A12, pp. 27519–27530.

    Article  ADS  Google Scholar 

  12. Safargaleev, V.V., Shibaeva, D.N., Sergienko, T.I., and Kornilov, I.A., On the possibility of coupling satellite and ground-based optical measurements in the region of pulsating auroras, Geomagn. Aeron. (Engl. Transl.), 2010, vol. 50, no. 7, pp. 873–879.

    Article  ADS  Google Scholar 

  13. Blockx, C., Gérard, J.-C., Coumans, V., et al., A comparison between FUV remote sensing of magnetotail stretching and the T01 model during quiet conditions and growth phases, Ann. Geophys., 2007, vol. 25, no. 1, pp. 161–170.

    Article  ADS  Google Scholar 

  14. Sato, N., Wright, D.M., Carlson, C.W., et al., Generation region of pulsating aurora obtained simultaneously by the FAST satellite and a Syowa–Iceland conjugate pair of observatories, J. Geophys. Res., 2004, vol. 109, A10201. doi 10.1029/2004JA010419

    Article  ADS  Google Scholar 

  15. Kubyshkina, M.V., Sergeev, V.A., and Pulkkinen, T.I., Hybrid input algorithm: An event oriented magnetospheric model, J. Geophys. Res., 1999, vol. 104, no. A11, pp. 24977–24993.

    Article  ADS  Google Scholar 

  16. Aikio, A., Mursula, K., Buchert, S., et al., Vaivads, A., and Fazakerley, A., Temporal evolution of two auroral arcs as measured by the Cluster satellite and coordinated ground-based instruments, Ann. Geophys., 2004, vol. 22, no. 12, pp. 4089–4101.

    Article  ADS  Google Scholar 

  17. Amm, O., Aikio, A., Bosqued, J.-M., et al., Mesoscale structure of a morning sector ionospheric shear flow region determined by conjugate Cluster IIand MIRACLR ground-based observations, Ann. Geophys., 2003, vol. 21, pp. 1737–1751.

    Article  ADS  Google Scholar 

  18. Tsyganenko, N.A., A model of the near magnetosphere with a dawn–dusk asymmetry. 2. Parameterization and fitting to observations, J. Geophys. Res., 2002, vol. 107, no. A8. doi 10.1029/2001JA000220

    Google Scholar 

  19. Heppner, J.P., Liebrecht, M.C., Maynard, N.C., and Pfaff, R.F., High-latitude distributions of plasma waves and spatial irregularities from DE2 alternating current electric field observations, J. Geophys. Res., 1993, vol. 98, pp. 1629–1652.

    Article  ADS  Google Scholar 

  20. Tereshchenko, E.D., Khudukon, B.Z., Rietveld, M.T., et al., The relationship between small-scale and largescale ionospheric electron density irregularities generated by powerful HFelectromagnetic waves at high latitudes, Ann. Geophys., 2006, vol. 24, pp. 2901–2909.

    Article  ADS  Google Scholar 

  21. Frolov, V.L., Bakhmet’eva, N.V., Belikovich, V.V., et al., Modification of the Earth’s ionosphere by highpower high-frequency radio waves, Phys.-Usp., 2007, vol. 50, no. 3, pp. 315–324.

    Article  ADS  Google Scholar 

  22. Piddyachiy, D., Inan, U.S., et al., DEMETER observations of an intense upgoing column of ELF/VLF radiation excited by the HAARP HF heater, J. Geophys. Res., 2008, vol. 113, A10308. doi 10.1029/2008JA013208

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Safargaleev.

Additional information

Original Russian Text © V.V. Safargaleev, N.N. Safargaleeva, 2018, published in Kosmicheskie Issledovaniya, 2018, Vol. 56, No. 2, pp. 128–136.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safargaleev, V.V., Safargaleeva, N.N. On the Accuracy of the Conjugation of High-Orbit Satellites with Small-Scale Regions in the Ionosphere. Cosmic Res 56, 115–122 (2018). https://doi.org/10.1134/S0010952518020089

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952518020089

Navigation