Three-Dimensional Mechanical–Thermal–Chemical Coupled Mesoscopic Simulation of the Collapse of an Air Bubble in an HMX Crystal

Abstract

Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) is extensively employed in military weapons as the main constituent of HMX-based polymer-bonded explosives (PBXs). It is known that the safety of PBXs is closely related to their microstructures. Discontinuities in PBXs, such as micron-sized pores, air bubbles, and interfaces between the explosive crystal and polymer bonds, may transform into hot spots when subjected to impact. Herein, a three-dimensional mechanical–thermal–chemical coupled mesoscopic model is proposed to study the collapse of an air bubble in an HMX crystal under impact. A viscoplastic constitutive model and the Birch–Murnaghan equation of state are employed for the HMX crystal to predict its mechanical response. Thermal decomposition of HMX is taken into account by using multistep thermal decomposition equations. The viscoplastic model yields results that reasonably agree with data obtained in the plane shock experiment. The influence of the edge length of the mesh elements on simulation results is analyzed. Then more simulations are conducted for studying the feasibility of using the viscoplastic model for different orientations of the HMX lattice. Afterwards, the coupled model is applied to study the collapse of an air-bubble/pore in the HMX crystal for different impact velocities.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

REFERENCES

  1. 1

    M. M. Chaudhri and J. E. Field, “The Role of Rapidly Compressed Gas Pockets in the Initiation of Condensed Explosives," Proc. Roy. Soc. London A 340 (1620) 113–128 (1974); DOI: https://doi.org/10.1098/rspa.1974.0143.

  2. 2

    J. E. Field, “Hot Spot Ignition Mechanisms for Explosives," Accounts of Chem. Res. 25 (11), 489–496 (1992); DOI: https://doi.org/10.1021/ar00023a002.

  3. 3

    W. P. Bassett and D. D. Dana, “Shock Initiation of Explosives: Temperature Spikes and Growth Spurts," Appl. Phys. Lett.109, 091903 (2016); DOI: https://doi.org/10.1063/1.4961619.

  4. 4

    W. P. Bassett and D. D. Dana, “Multichannel Emission Spectrometer for High Dynamic Range Optical Pyrometry of Shock-Driven Materials," Appl. Phys. Lett. 87, 103107 (2016); DOI:https: //doi.org/10.1063/1.4964386.

  5. 5

    W. P. Bassett and D. D. Dana, “High Dynamic Range Emission Measurements of Shocked Energetic Materials: Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)," Appl. Phys. Lett. 119, 225103 (2016); DOI: https://doi.org/10.1063/1.4953353.

  6. 6

    W. P. Bassett, B. P. Johnson, N. K. Neelakantan, et al., “Shock Initiation of Explosives: High Temperature Hot Spots Explained," Appl. Phys. Lett. 111 (6), 061902 (2017); DOI: https://doi.org/10.1063/1.4985593.

  7. 7

    S. M. Karakhanov, A. V. Plastinin, D. S. Bordzilovskii, and S. A.Bordzilovskii, “Time of Hot-Spot Formation in Shock Compression of Microballoons in a Condensed Medium," Fiz. Goreniya Vzryva52 (3), 105–113 (2016) [Combust., Expl., Shock Waves52 (3), 350–357 (2016)].

  8. 8

    S. A. Bordzilovskii, S. M. Karakhanov, and V. V. Sil’vestrov, “Optical Radiation from Shock-Compressed Epoxy with Glass Microspheres," Fiz. Goreniya Vzryva 50 (3), 105–112 (2014) [Combust., Expl., Shock Waves 50 (3), 339–345 (2014)].

  9. 9

    V. S. Nefedov, “Initiation of Explosive Transformation of High Explosives under Low-Velocity Mechanical Impacts and Weak Shock Waves Due to Formation of Viscoplastic Flows," Fiz. Goreniya Vzryva54 (5), 65–75 (2018) [Combust., Expl., Shock Waves54 (5), 570–579 (2018)].

  10. 10

    B. A. Khasainov, A. A. Borisov, B. S. Ermolaev, and A. I. Korotkov, “Two-Phase Viscoplastic Model of Shock Initiation of Detonation in High Density Pressed Explosives," in Proc. 7th Symp. (Int.) on Detonation (1981), pp. 435–447.

  11. 11

    R. Belmas and J. P. Plotard, “Physical Origin of Hot Spots in Pressed Explosive Compositions," J. Phys. IV 05(C4), 61–87 (1995); DOI: https://doi.org/10.1051/jp4:1995406.

  12. 12

    J. Massoni and R. Saurel, “A Mechanistic Model for Shock Initiation of Solid Explosives," Phys. Fluids 11 (3), 710–736 (1999); DOI: https://doi.org/10.1063/1.869941.

  13. 13

    F. M. Najjar, W. M. Howard, L. E. Fried, et al., “Computational Study of 3-D Hot-Spot Initiation in Shocked Insensitive High-Explosive," AIP Conf. Proc. P. 255–258 (2012); DOI: https://doi.org/10.1063/1.3686267.

  14. 14

    G. A. Levesque and P. Vitello, “The Effect of Pore Morphology on Hot Spot Temperature," Propell., Explos., Pyrotech.40 (2), 303–308 (2015); DOI: https:// doi.org/10.1002/prep.201400184.

  15. 15

    R. A. Austin, H. K. Springer, and L. E. Fried, “Grain-Scale Simulation of Shock Initiation in Composite High Explosives," Energ. Mater. 25, 243–270 (2017); DOI: https://doi.org/10.1007/978-3-319-59208-4_8.

  16. 16

    H. K. Springer, S. Bastea, A. L. Nichols III, et al., “Modeling the Effects of Shock Pressure and Pore Morphology on Hot Spot Mechanisms in HMX," Propell., Explos., Pyrotech. 43 (8), 805–817 (2018); DOI: https://doi.org/10.1002/prep.201800082.

  17. 17

    R. Menikoff and T. D. Sewell, “Constituent Properties of HMX Needed for Mesoscale Simulations," Combust. Theory Modell.6 (1), 103–125 (2002); DOI: https:// doi.org/10.1088/1364-7830/6/1/306.

  18. 18

    T. D. Swell and R. Menikoff, “Complete Equation of State for Beta-HMX and Implications for Initiation," AIP Conf. Proc. 157–162 (2004); DOI: https://doi.org/10.1063/1.1780207.

  19. 19

    R. Menikoff, “Pore Collapse and Hot Spots in HMX," AIP Conf. Proc. 706 (1) 393–396 (2004); DOI: https://doi.org/10.1063/1.1780261.

  20. 20

    A. Kapahi and H. S. Udaykumar, “Dynamics  of  Void  Collapse in Shocked Energetic Materials: Physics of Void–Void Interactions," Shock Waves 23, 537–558 (2013); https://doi.org/10.1007/s00193-013-0439-6.

  21. 21

    N. K. Rai and H. S. Udaykumar, “Three-Dimensional Simulations of Void Collapse in Energetic Materials," Phys. Rev. Fluids3, 033201 (2018); DOI: https://doi.org/10.1103/PhysRevFluids.3.033201.

  22. 22

    C. M. Tarver, S. K. Chidester, and A. L. Nichols III, “Critical Conditions for Impact- and Shock-Induced Hot Spots in Solid Explosives," J. Phys. Chem. 100, 5794–5799 (1996); DOI: https://doi.org/10.1021/jp953123s.

  23. 23

    LS-DYNA Theory Manual (2006); http://www. lstc.com/pdf/ls-dyna_theory_manual_2006.pdf.

  24. 24

    J. J. Dick, A. R. Martinez, and R. S. Hixson, “Plane Impact Response of PBX-9501 and Its Components Below 2 GPa," Tech. Report No. LA-13426-MS (Los Alamos National Laboratory, 1998); DOI: https://doi.org/10.2172/663187.

  25. 25

    J. J. Dick and R. Menikoff, “Analysis of Wave Profiles for Single-Crystal Cyclotetramethylene Tetranitramine," J. Appl. Phys. 97, 023529 (2005); DOI:https:// doi.org/10.1063/1.1828602.

  26. 26

    J. J. Dick and A. R. Martinez, “Elastic Precursor Decay in HMX Explosive Crystals," AIP Conf. Proc. 620, 817 (2002); DOI: https:// doi.org/10.1063/1.1483662.

  27. 27

    J. J. Dick, D. E. Hooks, R. Menikoff, and A. R. Martinez, “Elastic–Plastic Wave Profiles in Cyclotetramethylene Tetranitramine Crystals," J. Appl. Phys. 96, 374–379 (2004); DOI: https://doi.org/10.1063/1.1757026.

  28. 28

    C. Yoo and H. Cynn, “Equation of State, Phase Transition, Decomposition of \(\beta\)-HMX (Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) at High Pressures," J. Chem. Phys. 111 (22), 10229–10235 (1999); DOI: https:// doi.org/10.1063/1.480341.

  29. 29

    T. D. Tran, R. L. Simpson, J. Maienschein, and C. Tarver, “Thermal Decomposition of Trinitrotoluene (TNT) with a New One-Dimensional Time to Explosion (ODTX) Apparatus," in 32nd Int. Annu. Conf. of Inst. of Chem. Technol. (2001).

  30. 30

    X. Q. Zhi, S. Q. Hu, Z. H. Xiao, et al., “Effects of Sealing Conditions on Fast Cook-Off Response Properties of Passive RDX," Chin. J. Explos. Propell. 33 (1), 31–34 (2010).

  31. 31

    C. M. Tarver, R. R. McGuire, E. L. Lee, et al., “The Thermal Decomposition of Explosives with Full Containment in One-Dimensional Geometries," in 17th Symp. (Int.) on Combustion(1979), pp. 1407–1413; DOI: https://doi.org/10.1016/S0082-0784(79)80132-0.

  32. 32

    R. R. McGuire and C. M. Tarver, “Chemical-Decomposition Models for the Thermal Explosion of Confined HMX, TATB, RDX, and TNT Explosives," in Seventh Symposium (Int.) on Detonation, Ed. byJ. M. Short (Naval Surface Weapons Centre, 1982), pp. 56–64.

  33. 33

    C. M. Tarver and T. D. Tran, “Thermal Decomposition Models for HMX-Based Plastic Bonded Explosives," Combust. Flame137, (1/2), 50–62 (2004); DOI: https://doi.org/10.1016/j.combustflame.2004.01.002.

  34. 34

    C. M. Tarver and J. G. Koerner, “Effects of Endothermic Binders on Times to Explosion of HMX- and TATB-Based Plastic Bonded Explosive," J. Energ. Mater. 26 (1), 1–28 (2007); DOI: https:// doi.org/10.1080/07370650701719170.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. Wang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Wang, Y., Lin, Y. et al. Three-Dimensional Mechanical–Thermal–Chemical Coupled Mesoscopic Simulation of the Collapse of an Air Bubble in an HMX Crystal. Combust Explos Shock Waves 57, 91–103 (2021). https://doi.org/10.1134/S0010508221010111

Download citation

Keywords

  • HMX
  • viscoplastic constitutive model
  • thermal decomposition
  • Arrhenius equations
  • air bubble