Skip to main content
Log in

Blast Load Model Generating Multiple Impulse Curves for Different Scaled Distances

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

This study proposes a blast load model that generates multiple impulse curves with appropriate shapes depending on the scaled distance and, thus, precisely calculates the blast load distribution over the structure surface. The suitability of the proposed model is examined by using the finite element simulation of a blast test with steel plates and comparing the predicted deflections with the measurements. The results reveal that the proposed model accurately calculates the blast load distribution over the structure surface. The predicted deflection profiles of the steel plates are closer to the measured deflection profiles when the proposed model is employed, as compared to the existing models, which produce only a single impulse curve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. “Structures to Resist the Effects of Accidental Explosions,” Technical Manual 5–1300 (U. S. Department of the Army, 1990).

  2. T. Børvik, A. G. Hanssen, M. Langseth, and L. Olovsson, “Response of Structures to Planar Blast Loads—A Finite Element Engineering Approach,” Comput. Struct. 87, 507–520 (2009).

    Article  Google Scholar 

  3. SIMULIA. Abaqus Analysis User’s Manual, Vol. 1 (2012).

  4. G. Randers-Pehrson and K. A. Bannister, Airblast Loading Model for DYNA2d and DYNA3d (Army Research Laboratory, 1997).

    Google Scholar 

  5. LS-DYNA Keyword User’s Manual, Version 971 (Livermore Software Technol. Corp., 2007).

  6. Autodyn User’s Manual (ANSYS Inc.,2013).

  7. V. H. Balden and G. N. Nurick, “Numerical Simulation of the Post-Failure Motion of Steel Plates Subjected to Blast Loading,” Int. J. Impact Eng. 32 (1), 14–34 (2005).

    Article  Google Scholar 

  8. G. S. Langdon and G. K. Schleyer, “Deformation and Failure of Profiled Stainless Steel Blast Wall Panels. Pt. III: Finite Element Simulations and Overall Summary,” Int. J. Impact Eng. 32 (6), 988–1012 (2006).

    Article  Google Scholar 

  9. L. Mazurkiewicz, J. Malachowski, P. Baranowski, and K. Damaziak, “Comparison of Numerical Testing Methods in Terms of Impulse Loading Applied to Structural Elements,” Theor. Appl. Mech. 51 (3), 615–625 (2013).

    Google Scholar 

  10. K. Sprangher, I. Vasilakos, D. Lecompte, H. Sol, and J. Vantomme, “Numerical Simulation and Experimental Validation of the Dynamic Response of Aluminum Plates under Free Air Explosions,” Int. J. Impact Eng. 54 (1), 83–95 (2003).

    Google Scholar 

  11. B. Zakrisson, B. Wikman, and H. Häggblad, “Numerical Simulations of Blast Loads and Structural Deformation from Near-Field Explosions in Air,” Int. J. Impact Eng. 38 (7), 597–612 (2011).

    Article  Google Scholar 

  12. T. A. Hustad and A. L. Lindland, Aluminum Structures Exposed to Blast Loading (Norwegian Univ. Sci. Tech., 2014).

    Google Scholar 

  13. K. P. Dharmasena, H. N. G. Wadley, Z. Xue, and J. W. Hutchinson, “Mechanical Response of Metallic Honeycomb Sandwich Panel Structures to High Intensity Dynamic Loading,” Int. J. Impact Eng. 35, 1063–1074 (2008).

    Article  Google Scholar 

  14. C. N. Kingery and G. Bulmash, Airblast Parameters from TNT Spherical air Burst and Hemispherical Surface Burst (U. S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, 1984).

    Google Scholar 

  15. F. G. Friedlander, “The Diffraction of Sound Pulses. I. Diffraction by a Semi-Infinite Plane,” Proc. Roy. Soc. London, A 186, 322–344 (1946).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Fundamentals of Protective Design for Conventional Eeapons, Technical Manual (U. S. Department of the Army, 1986).

  17. S. C. Yuen and G. N. Nurick, “Experimental and Numerical Studies on the Response of Quadrangular Stiffened Plates. Pt I: Subjected to Uniform Blast Load,” Int. J. Impact Eng. 31 (1), 55–83 (2005).

    Article  Google Scholar 

  18. G. R. Johnson and W. H. Cook, “A Constitutive Model and Data for Metals Subjected to Large Strain, High Strain Rates and High Temperatures,” in Proc. 7th Int. Symp. on Ballistics, (1983), Vol. 54, pp. 541–547.

    Google Scholar 

  19. K. Nahshon et al., “Dynamic Shear Rupture of Steel Plates,” J. Mech. Mat. Struct. 2 (10), 2049–2066 (2007).

    Article  Google Scholar 

  20. S. E. Rigby and P. W. Sielicki, “An Investigation of TNT Equivalence of Hemispherical PE4 Charges,” Eng. Trans. 62, 423–35 (2014).

    Google Scholar 

  21. G. Cowper and P. S Symonds, Strain-Hardening and Strain-Rate Effects in the Impact Loading of Cantilever Beams (Brown Univ., U.S.A., 1957).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Jang.

Additional information

Original Russian Text © B.S. Jang, S.H. Lee, Y. Lee.

Published in Fizika Goreniya i Vzryva, Vol. 54, No. 6, pp. 121–130, November–December, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, B.S., Lee, S.H. & Lee, Y. Blast Load Model Generating Multiple Impulse Curves for Different Scaled Distances. Combust Explos Shock Waves 54, 737–746 (2018). https://doi.org/10.1134/S001050821806014X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001050821806014X

Keywords

Navigation