Skip to main content
Log in

The Use of the [H2O–CO2] Arbitrary Decomposition Assumption to Predict the Performance of Condensed High Explosives

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The plate dent test is one of the simplest tools for fast determination of the detonation pressure. The test is based on the observation that the detonation pressure correlates with the depth of the dent produced by a detonating explosive on a metal witness plate. The present study is aimed at developing a model for estimating the dent depth, which is used not only to obtain the detonation pressure, but also to evaluate the brisance relative to a reference explosive. It is shown that the experimental dent depth values for CHNO and CHNOClF explosives can be successfully reproduced by a model based on few parameters, namely: loading density, number of moles of gaseous detonation products per gram of the explosive, and average molecular weight of the gaseous products, where the number of moles and the mean molecular weight of the gaseous products are calculated according to the [H2O–CO2] arbitrary decomposition assumption. Furthermore, the predicted values of the dent depth and the Kamlet–Jacobs method are used to estimate the detonation pressure for 37 explosives. The results show that the pressures obtained on the basis of the dent depth values are in better agreement with experimental/thermochemical code data than the predictions of the Kamlet–Jacobs method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. T. Nielsen, “Caged Polynitramine Compound,” US Patent No. 5 693 794 (1988).

    Google Scholar 

  2. M.-X. Zhang, P. E. Eaton, and R. Gilardi, “Heptaand Octanitrocubanes,” Angew. Chem., Int. Ed. 39 (2), 401–404 (2000).

    Article  Google Scholar 

  3. J. Geith, T. M. Klapötke, J. Weigand, and G. Holl, “Calculation of the Detonation Velocities and Detonation Pressures of Dinitrobiuret (DNB) and Diaminotetrazolium Nitrate (HDAT-NO3),” Propel., Explos., Pyrotech. 29 (1), 3–8 (2004).

    Article  Google Scholar 

  4. H. Gao and J. n. M. Shreeve, “Azole-Based Energetic Salts,” Chem. Rev. 111 (11), 7377–7436 (2011).

    Article  Google Scholar 

  5. D. Fischer, T. M. Klapötke, and J. Stierstorfer, “Oxalylhydrazinium Nitrate and Dinitrate-Efficiency Meets Performance,” J. Energ. Mater. 32 (1), 37–49 (2014).

    Article  ADS  Google Scholar 

  6. T. M. Klapötke and T. G. Witkowski, “Covalent and Ionic Insensitive High-Explosives,” Propel., Explos., Pyrotech. 41 (3), 470–483 (2016).

    Article  Google Scholar 

  7. T. M. Klapötke, M. Leroux, P. C. Schmid, and J. Stierstorfer, “Energetic Materials Based on 5,5'-Diamino-4,4'-dinitramino-3,3'-bi-1,2,4-triazole,” Chem.-Asian J. 11 (6), 844–851 (2016).

    Article  Google Scholar 

  8. M. Sućeska, Test Methods for Explosives (Springer-Verlag, New York, 1995).

    Book  Google Scholar 

  9. L. C. Smith, “On Brisance, and a Plate-Denting Test for the Estimation of Detonation Pressure,” Report LADC-6267 (Los Alamos Scientific Laboratory, 1963).

    Book  Google Scholar 

  10. C.L. Mader, Numerical Modeling of Explosives and Propellants (CRC Press, Boca Raton, 2008).

    Google Scholar 

  11. M. Suceska, “Calculation of Detonation Properties by EXPLO5 Computer Program,” Mater. Sci. Forum 465/466, 325–330 (2004).

    Article  Google Scholar 

  12. L. E. Fried, W. M. Howard, and P. C. Souers, CHEETAH 2.0 User’s Manual, UCRL-MA-117541, Rev. 5 (Lawrence Livermore National Laboratory, 1998).

    Google Scholar 

  13. A. Smirnov, D. Lempert, T. Pivina, and D. Khakimov, “Basic Characteristics for Estimation Polynitrogen Compounds Efficiency,” Cent. Eur. J. Energ. Mater. 8 (4), 233–247 (2011).

    Google Scholar 

  14. J. R. Stine, “On Predicting Properties of Explosives-Detonation Velocity,” J. Energ. Mater. 8 (1/2), 41–73 (1990).

    Article  Google Scholar 

  15. M. H. Keshavarz, A. Zamani, and M. Shafiee, “Predicting Detonation Performance of CHNOFCl and Aluminized Explosives,” Propel., Explos., Pyrotech. 39 (5), 749–754 (2014).

    Article  Google Scholar 

  16. M. H. Keshavarz, M. Kamalvand, M. Jafari, and A. Zamani, “An Improved Simple Method for the Calculation of the Detonation Performance of CHNOFCl, Aluminized and Ammonium Nitrate Explosives,” Cent. Eur. J. Energ. Mater. 13 (2), 381–396 (2016).

    Article  Google Scholar 

  17. M. J. Kamlet and S. J. Jacobs, “Chemistry of Detonation. I. A Simple Method for Calculating Detonation Properties of C–H–N–O Explosives,” J. Chem. Phys. 48 (1), 23–35 (1968).

    Article  ADS  Google Scholar 

  18. D. R. Hardesty and J. E. Kennedy, “Thermochemical Estimation of Explosive Energy Output,” Combust. Flame 28, 45–59 (1977).

    Article  Google Scholar 

  19. M. J. Kamlet and M. Finger, “An Alternative Method for Calculating Gurney Velocities,” Combust. Flame 34, 213–214 (1979).

    Article  Google Scholar 

  20. J. M. Short, F. H. Helm, M. Finger, and M. J. Kamlet, “The Chemistry of Detonations. VII. A Simplified Method for Predicting Explosive Performance in the Cylinder Test,” Combust. Flame 43, 99–109 (1981).

    Article  Google Scholar 

  21. H. Hornberg and F. Volk, “The Cylinder Test in the Context of Physical Detonation Measurement Methods,” Propel., Explos., Pyrotech. 14 (5), 199–211 (1989).

    Article  Google Scholar 

  22. T. R. Gibbs and P. Popolato, LASL Explosive Property Data, (Univ. of California Press, Berkeley, 1980).

    Google Scholar 

  23. D. Chavez, T. M. Klapötke, D. Parrish, et al., “The Synthesis and Energetic Properties of 3,4-bis(2,2,2-trinitroethylamino)furazan (BTNEDAF),” Propel., Explos., Pyrotech. 39 (5), 641–648 (2014).

    Article  Google Scholar 

  24. M. Göbel and T. M. Klapötke, “Development and Testing of Energetic Materials: The Concept of High Densities Based on the Trinitroethyl Functionality,” Adv. Funct. Mater. 19 (3), 347–365 (2009).

    Article  Google Scholar 

  25. A. Elbeih, J. Pachman, S. Zeman, et al., “Detonation Characteristics of Plastic Explosives Based on Attractive Nitramines with Polyisobutylene and Poly(methyl methacrylate) Binders,” J. Energ. Mater. 30 (4), 358–371 (2012).

    Article  ADS  Google Scholar 

  26. J. M. Veauthier, D. E. Chavez, B. C. Tappan, and D. A. Parrish, “Synthesis and Characterization of Furazan Energetics ADAAF and DOATF,” J. Energ. Mater. 28 (3), 229–249 (2010).

    Article  ADS  Google Scholar 

  27. N. Fischer, D. Fischer, T. M. Klapötke, et al., “Pushing the Limits of Energetic Materials—the Synthesis and Characterization of Dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate,” J. Mater. Chem. 22 (38), 20418–20422 (2012).

    Article  Google Scholar 

  28. L. Liu, Y. Zhang, S. Zhang, and T. Fei, “Heterocyclic Energetic Salts of 4,4',5,5'-tetranitro-2,2'-biimidazole,” J. Energ. Mater. 33 (3), 202–214 (2015).

    Article  ADS  Google Scholar 

  29. A. A. Dippold, M. Feller, and T. M. Klapötke, “5,5'-Dinitrimino-3,3'-methylene-1H-1,2,4-bistriazole—A Metal Free Primary Explosive Combining Excellent Thermal Stability and High Performance,” Cent. Eur. J. Energ. Mater. 8 (4), 261–278 (2011).

    Google Scholar 

  30. NIST Chemistry WebBook. NIST Standard Reference Database Number 69 (National Institute of Standards and Technology, Gaithersburg MD, 20899); http://webbook.nist.gov.

  31. M. J. Kamlet and C. Dickinson, “Chemistry of Detonations. III. Evaluation of the Simplified Calculational Method for Chapman–Jouguet Detonation Pressures on the Basis of Available Experimental Information,” J. Chem. Phys. 48 (1), 43–50 (1968).

    Article  ADS  Google Scholar 

  32. B. M. Dobratz and P. C. Crawford, “LLNL Explosives Handbook Properties of Chemical Explosives and Explosive Simulants,” Report No. UCRL-52997-CHG. 2 (Lawrence Livermore National Laboratory, 1985).

    Google Scholar 

  33. M. H. Keshavarz “Theoretical Prediction of Detonation Pressure of CHNO High Energy Materials,” Indian J. Eng. Mater. Sci. 14 (1), 77–80 (2007).

    Google Scholar 

  34. M. Jafari and M. H. Keshavarz, “Simple Approach for Predicting the Heats of Formation of High Nitrogen Content Materials,” Fluid Phase Equilib. 415, 166–175 (2016).

    Article  Google Scholar 

  35. B. M. Rice, S. V. Pai, and J. Hare, “Predicting Heats of Formation of Energetic Materials using Quantum Mechanical Calculations,” Combust. Flame 118 (3), 445–458 (1999).

    Article  Google Scholar 

  36. D. Frem, “Predicting the Plate Dent Test Output in Order to Assess the Performance of Condensed High Explosives,” J. Energ. Mater. 35 (1), 20–28 (2017).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Frem.

Additional information

Original Russian Text © D. Frem.

Published in Fizika Goreniya i Vzryva, Vol. 54, No. 6, pp. 85–94, November–December, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frem, D. The Use of the [H2O–CO2] Arbitrary Decomposition Assumption to Predict the Performance of Condensed High Explosives. Combust Explos Shock Waves 54, 704–711 (2018). https://doi.org/10.1134/S0010508218060102

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508218060102

Keywords

Navigation