Combustion, Explosion, and Shock Waves

, Volume 53, Issue 1, pp 93–102 | Cite as

Coagulation of carbon clusters in a detonation wave

  • V. V. Danilenko


The effect of the parameters of a charge of TNT/RDX alloys and their detonation conditions on the coagulation of carbon on the isentrope of the detonation products is analyzed. In the region of liquid nanocarbon, coagulation occurs by coalescence of nanodroplets and in the region of solid nanocarbon, by their joining (sintering) simultaneously with crystallization. Therefore, the specific surface area of nanodiamonds calculated from their sizes is always larger than the measured value. Separation of nanodroplets in detonation products accelerates their coagulation and cooling due to the flow of cooler products around them. Evaluation of the distance between the surfaces of nanodroplets in various TNT/RDX alloys shows that they are small, smaller than nanodroplets. The conditions of rapid coalescence of nanodroplets during different deceleration of the products by rigid barriers are analyzed. An increase of up to five orders of magnitude in the size of diamond particles was established experimentally. The factors responsible for the change in the coagulation rate with the transition from heterogeneous to homogeneous TNT/RDX alloy with decreasing size of TNT/RDX particles are discussed.


coagulation detonation charge parameters carbon nanodroplets nanodiamonds 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yu. I. Petrov, Clusters and Small Particles (Nauka, Moscow, 1982) [in Russian].Google Scholar
  2. 2.
    I. D. Morokhov, L. I. Trusov, S. P. Chizhik, Ultrafine Metal Materials (Atomizdat, Moscow, 1977) [in Russian].Google Scholar
  3. 3.
    A. G. Sutugin, “Formation of Aerosols in Rapid Volume Condensation,” Author’s Abstract of Doctoral Dissertation (Chem.) (Moscow, 1976).Google Scholar
  4. 4.
    A. P. Ershov and A. L. Kupershtok, “Fractal Structure Formation in Explosion,” Fiz. Goreniya Vzryva 27 (2), 111–117 (1991) [Combust., Expl., Shock Waves 27 (2), 231–236 (1991)].Google Scholar
  5. 5.
    A. Strachan and E. M. Kober, “Thermal Decomposition of RDX from Reactive Molecular Dynamics,” J. Chem. Phys. 122 (5), 1–10 (2005).CrossRefGoogle Scholar
  6. 6.
    I. Yu. Mal’kov, L. I. Filatov, V. M. Titov, B. V. Litvinov, A. L. Chuvilin, and T. S. Teslenko, “Formation of Diamond from the Liquid Phase of Carbon,” Fiz. Goreniya Vzryva 29 (4), 131–134 (1993) [Combust., Expl., Shock Waves 29 (4), 542–544 (1993)].Google Scholar
  7. 7.
    A. L. Kupershtokh, A. P. Ershov, and D. A. Medvedev, “Model for the Coagulation of Carbon Clusters at High Densities and Temperatures,” Fiz. Goreniya Vzryva 34 (4), 102–109 (1998) [Combust., Expl., Shock Waves 34 (4), 460–466 (1998)].Google Scholar
  8. 8.
    A. P. Ershov and A. L. Kupershtokh, “Exothermic Coagulation of Small Clusters in the Front of the Detonation Wave,” Pis’ma Zh. Tekh. Fiz. 19 (2), 76–80 (1993).Google Scholar
  9. 9.
    V. V. Danilenko, Synthesis and Sintering of Diamond by Explosion (Energoatomisdat, Moscow, 2003) [in Russian].Google Scholar
  10. 10.
    V. V. Danilenko, Explosion. Physics, Engineering, Technology (Energoatomizdat, Moscow, 2010) [in Russian].Google Scholar
  11. 11.
    V. V. Danilenko, “Nanocarbon Phase Diagram and Conditions for Detonation Nanodiamond Formation,” in Proc. of the NATO Advanced Research Workshop on Synthesis, Properties and Applications of Ultrananocrystalline Diamond, St. Petersburg, Russia, 7–10 June, 2004 (Springer, Dordrecht, The Netherlands, 2005), pp. 181–198.Google Scholar
  12. 12.
    B. A. Vyskubenko, V. V. Danilenko, E. E. Lin, V. A. Mazanov, T. V. Serova, V. I. Sukharenko, and A. P. Tolochko, “Effect of Scale Factors on the Sizes and Yields of Diamonds in Detonation Synthesis,” Fiz. Goreniya Vzryva 28 (2), 108–109 (1992).Google Scholar
  13. 13.
    V. D. Blank, A. A. Golubev, V. A. Gorbachev, A. A. Deribas, G. A. Dubitsky, N. R. Serebrynaya, and N. V. Shevchenko, “Microdiamonds of Detonation Synthesis,” Khim. Khim. Tekhnol. 55 (6), 37–41 (2012).Google Scholar
  14. 14.
    K. V. Volkov, V. V. Danilenko, and V. I. Elin, “Synthesis of Diamond from the Carbon in the Detonation Products of Explosives,” Fiz. Goreniya Vzryva 26 (3), 123–125 (1990) [Combust., Expl., Shock Waves 26(3), 366–368 (1990)].Google Scholar
  15. 15.
    Physics of Explosion, Ed. by L. P. Orlenko (Fizmatlit, Moscow, 2004) [in Russian].Google Scholar
  16. 16.
    F. A. Baum, L. P. Orlenko, K. P. Stanyukovich, V. P. Chelyshev, and B. I. Shekhter, Physics of Explosion (Nauka, Moscow, 1975) [in Russian].Google Scholar
  17. 17.
    Ch. L. Mader, Numerical Modeling of Explosives and Propellands (CRC Press, New York, 1998).Google Scholar
  18. 18.
    V. M. Titov, V. F. Anisichkin, and I. Yu. Mal’kov, “Synthesis of Ultradispersed Diamond in DetonationWaves,” Fiz. Goreniya 25 (3), 117–126 (1989) [Combust., Expl., Shock Waves 25 (3), 372–379 (1989)].Google Scholar
  19. 19.
    N. V. Kozyrev and E. S. Golubeva, “Investigation of the Synthesis of Ultradispersed Diamonds in Mixtures of TNT with RDX, HMX, and PETN,” Fiz. Goreniya Vzryva 28 (5), 119–123 (1992) [Combust., Expl., Shock Waves 28 (5), 560–564 (1992)].Google Scholar
  20. 20.
    V. V. Danilenko, “Phase Diagram of Nanocarbon,” (Fiz. Goreniya Vzryva 41 (4), 110–116 (2005) [Combust., Expl., Shock Waves 41 (4), 460–466 (2005)].Google Scholar
  21. 21.
    V. V. Danilenko, “Specific Features of Synthesis of Detonation Nanodiamonds,” Fiz. Goreniya Vzryva 41 (5), 104–116 (2005) [Combust., Expl., Shock Waves 41 (5), 577–588 (2005)].Google Scholar
  22. 22.
    A. M. Molodets, “Free Energy of Diamond,” Fiz. Goreniya Vzryva 34 (4), 94–101 (1998) [Combust., Expl., Shock Waves 34 (4), 453–459 (1998)].Google Scholar
  23. 23.
    F. H. Ree, “Supercritical Fluid Phase Separations: Implication for Detonation Properties of Condensed Explosives, J. Chem. Phys. 84 (10), 5845–5856 (1986).ADSCrossRefGoogle Scholar
  24. 24.
    K. F. Grebenkin, M. V. Taranik, A. L. Zherebtsov “Computer Modeling of Scale Effects at Heterogeneous HE Detonation,” in 13th Int. Symp. on Detonation (Norfolk, 23–28 July, 2006), pp. 496–505.Google Scholar
  25. 25.
    E. Osawa, S. Sasaki, and R. Yamanoi, “Deagglomeration of Detonation Nanodiamond,” in Ultrananocrystalline Diamond. Synthesis, Properties and Applications, Ed. by O. A. Shenderova, D. M. Gruen (Elsevier, 2012). Ch. 6.Google Scholar
  26. 26.
    V. I. Kuznetsov, Yu. V. Butenko, “Diamond Phase Transition at Nanoscale,” in Ultrananocrystalline Diamond. Synthesis, Properties, and Applications, Ed. by O. L. Shenderova and D. M. Gruen (W. Andrew, Norwich–New York, 2006), pp. 405–475.CrossRefGoogle Scholar
  27. 27.
    A. S. Banard, “Self-Assembly in Nanodiamond Agglutinates,” J. Mater. Chem. 18, 4038–4041 (2008).CrossRefGoogle Scholar
  28. 28.
    H. V. Kozyrev, B. V. Larionov, and G. V. Sakovich, “Influence of HMX Particle Size on the Synthesis of Nanodiamonds in Detonation Waves,” Fiz. Goreniya Vzryva 44 (2), 79–84 (2008) [Combust., Expl., Shock Waves 44 (2), 193–197 (2008)].Google Scholar
  29. 29.
    A. P. Ershov, “Ionization during Detonation of Condensed Explosives,” Fiz. Goreniya Vzryva 11 (6), 938–945 (1975) [Combust., Expl., Shock Waves 11 (6), 798–803 (1975)].Google Scholar
  30. 30.
    I. Yu. Mal’kov “Carbon Coagulation in a Nonstationary Detonation-Product Flow,” Fiz. Goreniya Vzryva 30 (5), 155–157 (1994) [Combust., Expl., Shock Waves 30 (5), 720–722 (1994)].Google Scholar
  31. 31.
    V. F. Anisichkin, “Mechanism of Carbon Release During Detonation Decomposition of Substances,” Fiz. Goreniya Vzryva 30 (5), 100–106 (1994) [Combust., Expl., Shock Waves 30 (5), 667–673 (1994)].Google Scholar
  32. 32.
    V. F. Anisichkin, “Isotope Studies of Detonation Mechanisms of TNT, RDX, and HMX,” Fiz. Goreniya Vzryva 43 (5), 96–103 (2007) [Combust., Expl., Shock Waves 43 (5), 580–586 (2007)].Google Scholar
  33. 33.
    V. Pichot, M. Comet, B. Risse, and D. Spitzer, “Detonation of Nanosized Explosive: New Mechanistic Model for Nanodiamond Formation,” Diamond and Related Materials, No. 54, 59–63 (2015).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.MoscowRussia

Personalised recommendations