Combustion, Explosion, and Shock Waves

, Volume 53, Issue 1, pp 49–54 | Cite as

Some features of the dielectric relaxation of nitroglycerin

  • D. N. Sadovnichii
  • Yu. M. Milekhin
  • S. A. Malinin
  • I. D. Voropaev


This paper presents the results of an experimental study of the dielectric relaxation of nitroglycerin in the temperature range of the liquid–solid phase transition. Measurements were performed in the electric field frequency range of 1–1264 MHz. It is shown that the dielectric relaxation of nitroglycerin includes at least two relaxation process. Possible factors that determine the temperature and frequency dependences of the complex dielectric permittivity of nitroglycerin are discussed.


nitroglycerin dielectric relaxation complex dielectric permittivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Energetic Condensed Systems: A Brief Encyclopedia, Ed. by B. P. Zhukov (Yanus-K, Moscow, 1999) [in Russian].Google Scholar
  2. 2.
    Ya. Yu. Akhadov, Dielectric Properties of Pure Liquids, (Izd. Standartov, Moscow, 1972) [ in Russian].Google Scholar
  3. 3.
    S. S. Nabatov, V. V. Yakushev, A. N. Dremin, “Shock-Induced Electrical Polarization of Nitroglycerine,” Fiz. Goreniya Vzryva 12 (2), 251–255 (1976) [Combust., Expl., Shock Waves 12 (2), 222–226 (1976)].Google Scholar
  4. 4.
    A. A. Potapov, Orientation Polarization: The Search for Optimal Models (Nauka, Novosibirsk, 2000) [in Russian].Google Scholar
  5. 5.
    S. M. Usmanov, Relaxation Polarization of Dielectrics: Calculation of Spectra of Dielectric Relaxation Times, (Nauka–Fizmatlit, Moscow, 1996) [in Russian].Google Scholar
  6. 6.
    K. L. Ngai, Relaxation and Diffusion in Complex Systems (Springer, New York, 2011).CrossRefGoogle Scholar
  7. 7.
    E. Yu. Orlova, Chemistry and Technology of High Explosives (Khimiya, Leningrad, 1973) [in Russian].Google Scholar
  8. 8.
    R. Meyer, J. K¨ohler, and A. Homburg, Explosives, (Wiley-VCY Verlag GmbH, Weinheim, 2002).CrossRefGoogle Scholar
  9. 9.
    G. A. Nishpal, Yu. M. Milekhin, L. A. Smirnov, A. N. Osavchuk, and E. G. Gusakovskaya, Theory and Practice of Explosion Safety of Energetic Materials (Khimmash, Moscow, 2002) [in Russian].Google Scholar
  10. 10.
    D. N. Sadovnichii, M. B. Markov, A. S. Vorontsov, and Yu.M. Milekhin, “Specific Features of Propagation of an Electromagnetic Pulse in a Solid-Propellant Energetic System,” Fiz. Goreniya Vzryva 48 (1), 110–116 (2012) [Combust., Expl., ShockWaves. 48 (1), 100–105 (2012)].Google Scholar
  11. 11.
    D. S. Sanditov and G. M. Bartenev, Physical Properties of Disordered Structures (Nauka, Novosibirsk, 1982) [in Russian].Google Scholar
  12. 12.
    F. Nahum, Nitroglycerin and Nitroglycerin Explosives (Dynamites), Ed. by B. Yu. Roizman (ONTI, Moscow–Leningrad, 1934) [Russian translation].Google Scholar
  13. 13.
    N. G. Yunda, G. V. Lagodzinskaya, A. I. Kazakov, et al., “Nitration Equilibrium in the Glycerol/Aqueous–Nitric-Acid System 3. PMR Parameters, Conformational Structure, and Main Properties of Glycerin and its Nitrates,” Izv. Akad. Nauk SSSR, No. 2, 381–389 (1991).Google Scholar
  14. 14.
    G. Power, M. Nagaraj, J. K. Vij, and G. P. Johari, “Debye Process and Dielectric State of an Alcohol in a Nonpolar Solvent,” J. Chem. Phys. 134 (4), 044525(1–9) (2011).CrossRefGoogle Scholar
  15. 15.
    R. Richert, A. Agapov, and A. Sokolov, “Appearance of a Debye Process at the Conductivity Relaxation Frequency of a Viscous Liquid,” J. Chem. Phys. 134 (10), 104508(1–7) (2011).CrossRefGoogle Scholar
  16. 16.
    R. Casalini and C. M. Roland, “On the Low Frequency Loss Peak in the Dielectric Spectrum of Glycerol,” J. Chem. Phys. 135 (9), 094502(1–3) (2011).CrossRefGoogle Scholar
  17. 17.
    A. Puzenko, Y. Hayashi, Y. T. Ryabov, I. Balin, Y. Feldman, U. Kaatze, R. Behrends, “Relaxation Dynamics in Glycerol–Water Mixtures: I. Gycerol-Rich Mixtures,” J. Phys. Chem. B 109 (12), 6031–6035 (2005).CrossRefGoogle Scholar
  18. 18.
    A. A. Pronin, M. V. Kondrin, A. G. Lyapin, V. V. Brazhnik, A. A. Volkov, R. Lunkenheimer, and A. Loydl, “Change in the Dynamics of Relaxation Processes in Glycerol at Pressure,” Pis’ma Zh. Eksp. Teor. Fiz. 92 (7), 528–533 (2010).Google Scholar
  19. 19.
    G. A. Krestov, Thermodynamics of Processes in Solutions (Khimiya, Leningrad, 1984) [in Russian].Google Scholar
  20. 20.
    A. Vispa, S. Busch, J. L. Tamarit, T. Unruh, F. Fernandez-Alonso, and L. C. Pardo, “A Robust Comparison of Dynamical Scenarios in a Glass-Forming Liquid,” Phys. Chem. Chem. Phys. 18 (5), 3975–3981 (2016).CrossRefGoogle Scholar
  21. 21.
    A. P. Tyutnev, D. N. Sadovnichy, V. S. Saenko, and E. D. Pozhidaev, “Molecular Motion and Their Role in the Transfer of Excess Charge Carriers in Polymers,” Vysokomolekulyar. Soed., Ser. A 42 (1), 16–26 (2000).Google Scholar
  22. 22.
    R. King and G. Smith, Antennas in Matter, Ed. by V. B. Shteinshleiger (Mir, Moscow, 1984), Book 1 [Russian translation].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • D. N. Sadovnichii
    • 1
  • Yu. M. Milekhin
    • 1
  • S. A. Malinin
    • 1
  • I. D. Voropaev
    • 1
  1. 1.Soyuz Federal Center of Double-Purpose TechnologiesDzerzhinskiiRussia

Personalised recommendations