Advertisement

Combustion, Explosion, and Shock Waves

, Volume 53, Issue 1, pp 8–14 | Cite as

What is burning in coal mines: Methane or coal dust?

  • A. A. Vasil’ev
  • A. V. Pinaev
  • A. A. Trubitsyn
  • A. Yu. Grachev
  • A. V. Trotsyuk
  • P. A. Fomin
  • A. V. Trilis
Article

Abstract

Possible scenarios of ignition and explosion development in coal mines are discussed. A principal possibility of complete quenching of detonation and combustion with the use of a sheet consisting of inert particles is experimentally demonstrated. As the detonation quenching process is rather complicated, it is recommended to focus the attention at the initial stage of ignition of the methane–air mixture, when it is possible to ensure effective quenching of the ignition site by using methods of advanced automatic monitoring and control with clear satisfaction of space and time requirements.

Keywords

methane coal dust combustion detonation limits deflagration-to-detonation transition coal mine explosions explosion suppression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fire and Explosion Hazards of Substances and Materials and Means of their Quenching: Reference Book, Ed. by A. N. Baratov, A. Ya. Korolchenko, G. N. Kravchuk, et al. (Khimiya, Moscow, 1990) [in Russian].Google Scholar
  2. 2.
    B. Lewis and G. von Elbe, Combustion, Flame, and Explosions of Gases (New York, 1961).Google Scholar
  3. 3.
    K. K. Andreev and A. F. Belyaev, Theory of Explosives (Gostekhizdat, Moscow, 1960) [in Russian].Google Scholar
  4. 4.
    Chemical Encyclopedia, Ed. by I. L. Knunyants (Sov. Entsiklopediya, Moscow, 1988) [in Russian].Google Scholar
  5. 5.
    Hazardous Chemical Substances. Hydrocarbons. Halogenated Hydrocarbons: Reference Book, Ed. by V. A. Filov (Khimiya, Leningrad, 1990) [in Russian].Google Scholar
  6. 6.
    M. Hertzberg, “The Flammability Limits of Gases, Vapors and Dusts: Theory and Experiment,” in Fuel–Air Explosions, Ed. by Lee and Guirao (Univ. of Waterloo Press, 1982), pp. 3–48.Google Scholar
  7. 7.
    M. Hertzberg, K. L. Cashdollar, and I. A. Zlochower, “Flammability Limit Measurements for Dusts and Gases: Ignition Energy Requirements and Pressure Dependences,” in 21th Symp. (Int.) on Combustion, 1986, pp. 303–313.Google Scholar
  8. 8.
    H. J. Michels, G. Munday, and A. R. Ubbelohde, “Detonation Limits in Mixtures of Oxygen and Homologous Hydrocarbons,” Proc. Roy. Soc. A: 1539, Math. Phys. Sci. 319 (10), 461–477 (1970).CrossRefGoogle Scholar
  9. 9.
    S. M. Kogarko, “Detonation of Methane–Air Mixtures and Detonation Limits of Hydrocarbon–Air Mixtures in a Large-Diameter Tube,” Zh. Tekh. Fiz. 38 (9), 2072–2083 (1958).Google Scholar
  10. 10.
    M. A. Nettleton, Gaseous Detonations, Their Nature, Effects and Control (Chapman and Hall, 1987).CrossRefGoogle Scholar
  11. 11.
    Physics of Explosion, Ed. by L. P. Orlenko (Fizmatlit, Moscow, 2002) [in Russian].Google Scholar
  12. 12.
    A. Yu. Grachev, A. V. Novikov, K. V. Panevnikov, and D. B. Terekhov, “Multifunctional Safety System in a Coal Mine—Positioning and Staff Alerting,” Vestn. Nauch. Tsentra Bezopas. Rabot Ugol. Prom., No. 2, 121–129 (2016).Google Scholar
  13. 13.
    A. A. Vasil’ev, A. V. Pinaev, A. V. Trotsyuk, et al., “Complete Suppression of Combustion and Detonation Waves by a Dust Sheet,” Vestn. Nauch. Tsentra Bezopas. Rabot Ugol. Prom., No. 4, 12–21 (2015).Google Scholar
  14. 14.
    A. V. Pinaev, A. A. Vasil’ev, and P. A. Pinaev, “Suppression of Gas Detonation by a Dust Cloud at Reduced Mixture Pressures,” Shock Waves 25, 267–275 (2015); DOI 10.1007/s00193-014-0543-2.ADSCrossRefGoogle Scholar
  15. 15.
    A. V. Fedorov, P. A. Fomin, V. M. Fomin, et al., Physicomathematical Modeling of Detonation Suppression by Clouds Consisting of Fine Particles (ITPM SO RAN–NGASU, Novosibirsk, 2011) [in Russian].Google Scholar
  16. 16.
    A. V. Trotsyuk, P. A. Fomin, and A. A. Vasil’ev, “Numerical Study of Cellular Detonation Structures of Methane Mixtures,” J. Loss Prev. Process Ind. 36, 394–403 (2015); DOI: 10.1016/j.jlp.2015.03.012.CrossRefGoogle Scholar
  17. 17.
    A. V. Trotsyuk, A. A. Vasil’ev, and A. V. Pinaev, “2D Numerical Simulation of the Dynamics of Detonation Wave Propagation in a Dusty Methane–Air Mixture,” Vestn. Nauch. Tsentra Bezopas. Rabot Ugol. Prom., No. 2, 82–90 (2016).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. A. Vasil’ev
    • 1
    • 2
  • A. V. Pinaev
    • 1
  • A. A. Trubitsyn
    • 1
  • A. Yu. Grachev
    • 1
  • A. V. Trotsyuk
    • 1
  • P. A. Fomin
    • 1
  • A. V. Trilis
    • 1
  1. 1.Lavrentyev Institute of Hydrodynamics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations