Skip to main content
Log in

What is burning in coal mines: Methane or coal dust?

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Possible scenarios of ignition and explosion development in coal mines are discussed. A principal possibility of complete quenching of detonation and combustion with the use of a sheet consisting of inert particles is experimentally demonstrated. As the detonation quenching process is rather complicated, it is recommended to focus the attention at the initial stage of ignition of the methane–air mixture, when it is possible to ensure effective quenching of the ignition site by using methods of advanced automatic monitoring and control with clear satisfaction of space and time requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fire and Explosion Hazards of Substances and Materials and Means of their Quenching: Reference Book, Ed. by A. N. Baratov, A. Ya. Korolchenko, G. N. Kravchuk, et al. (Khimiya, Moscow, 1990) [in Russian].

  2. B. Lewis and G. von Elbe, Combustion, Flame, and Explosions of Gases (New York, 1961).

    Google Scholar 

  3. K. K. Andreev and A. F. Belyaev, Theory of Explosives (Gostekhizdat, Moscow, 1960) [in Russian].

    Google Scholar 

  4. Chemical Encyclopedia, Ed. by I. L. Knunyants (Sov. Entsiklopediya, Moscow, 1988) [in Russian].

  5. Hazardous Chemical Substances. Hydrocarbons. Halogenated Hydrocarbons: Reference Book, Ed. by V. A. Filov (Khimiya, Leningrad, 1990) [in Russian].

  6. M. Hertzberg, “The Flammability Limits of Gases, Vapors and Dusts: Theory and Experiment,” in Fuel–Air Explosions, Ed. by Lee and Guirao (Univ. of Waterloo Press, 1982), pp. 3–48.

    Google Scholar 

  7. M. Hertzberg, K. L. Cashdollar, and I. A. Zlochower, “Flammability Limit Measurements for Dusts and Gases: Ignition Energy Requirements and Pressure Dependences,” in 21th Symp. (Int.) on Combustion, 1986, pp. 303–313.

    Google Scholar 

  8. H. J. Michels, G. Munday, and A. R. Ubbelohde, “Detonation Limits in Mixtures of Oxygen and Homologous Hydrocarbons,” Proc. Roy. Soc. A: 1539, Math. Phys. Sci. 319 (10), 461–477 (1970).

    Article  Google Scholar 

  9. S. M. Kogarko, “Detonation of Methane–Air Mixtures and Detonation Limits of Hydrocarbon–Air Mixtures in a Large-Diameter Tube,” Zh. Tekh. Fiz. 38 (9), 2072–2083 (1958).

    Google Scholar 

  10. M. A. Nettleton, Gaseous Detonations, Their Nature, Effects and Control (Chapman and Hall, 1987).

    Book  Google Scholar 

  11. Physics of Explosion, Ed. by L. P. Orlenko (Fizmatlit, Moscow, 2002) [in Russian].

  12. A. Yu. Grachev, A. V. Novikov, K. V. Panevnikov, and D. B. Terekhov, “Multifunctional Safety System in a Coal Mine—Positioning and Staff Alerting,” Vestn. Nauch. Tsentra Bezopas. Rabot Ugol. Prom., No. 2, 121–129 (2016).

    Google Scholar 

  13. A. A. Vasil’ev, A. V. Pinaev, A. V. Trotsyuk, et al., “Complete Suppression of Combustion and Detonation Waves by a Dust Sheet,” Vestn. Nauch. Tsentra Bezopas. Rabot Ugol. Prom., No. 4, 12–21 (2015).

    Google Scholar 

  14. A. V. Pinaev, A. A. Vasil’ev, and P. A. Pinaev, “Suppression of Gas Detonation by a Dust Cloud at Reduced Mixture Pressures,” Shock Waves 25, 267–275 (2015); DOI 10.1007/s00193-014-0543-2.

    Article  ADS  Google Scholar 

  15. A. V. Fedorov, P. A. Fomin, V. M. Fomin, et al., Physicomathematical Modeling of Detonation Suppression by Clouds Consisting of Fine Particles (ITPM SO RAN–NGASU, Novosibirsk, 2011) [in Russian].

    Google Scholar 

  16. A. V. Trotsyuk, P. A. Fomin, and A. A. Vasil’ev, “Numerical Study of Cellular Detonation Structures of Methane Mixtures,” J. Loss Prev. Process Ind. 36, 394–403 (2015); DOI: 10.1016/j.jlp.2015.03.012.

    Article  Google Scholar 

  17. A. V. Trotsyuk, A. A. Vasil’ev, and A. V. Pinaev, “2D Numerical Simulation of the Dynamics of Detonation Wave Propagation in a Dusty Methane–Air Mixture,” Vestn. Nauch. Tsentra Bezopas. Rabot Ugol. Prom., No. 2, 82–90 (2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Vasil’ev.

Additional information

Original Russian Text © A.A. Vasil’ev, A.V. Pinaev, A.A. Trubitsyn, A.Yu. Grachev, A.V. Trotsyuk, P.A. Fomin, A.V. Trilis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasil’ev, A.A., Pinaev, A.V., Trubitsyn, A.A. et al. What is burning in coal mines: Methane or coal dust?. Combust Explos Shock Waves 53, 8–14 (2017). https://doi.org/10.1134/S0010508217010026

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508217010026

Keywords

Navigation