Conformational Changes that occur in Heme and Globin upon Temperature Variations and Normobaric Hypoxia

Abstract—Using Raman spectroscopy (RS) approach in a spectral range of 1000–3000 cm–1 were used to study the conformational and structural changes that arise in the heme group and globin moiety of hemoglobin in human red blood cells at various temperatures and oxygen contents. In hypoxia, the hemoglobin conformation was shown to change as a result of the increasing contribution of hematoporphyrin pyrrole rings and vibrational motions of vinyl groups. Modifications were additionally detected in the contributions of symmetric and asymmetric vibrations of the CH2 and CH3 radicals of histidine (2850, 2860, and 2900 cm–1) and lysine (2880 and 2860 cm–1) residues. The mechanisms of oxygen binding are discussed for hemoglobin located in the submembrane region and cytoplasm of the cell.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. 1

    D. Holly and B. Glenn, Am. J. Physiol. Heart Circ. Physiol. 293, 2193 (2007)

    Article  Google Scholar 

  2. 2

    M. R. Hardeman, P. T. Goedhart, and S. K. Shin, in Handbook of Hemorheology and Hemodynamics (IOS Press Ebooks, 2007), pp. 242–266.

    Google Scholar 

  3. 3

    J. A. Walder, R. Chatterjee, T. L. Steck, et al., J. Biol. Chem. 259 (16), 10238 (1984).

    Google Scholar 

  4. 4

    R. A. Reithmeier, J. R. Casey, A. C. Kalli, et al., Biochim. Biophys. Acta–Biomembr. 1858 (7), 1507 (2016

  5. 5

    R. R. Tuck, J. D. Schmelzer, and P. A. Low, Brain 107 (3), 935 (1984)

    Article  Google Scholar 

  6. 6

    O.G. Luneva, S. V. Sidorenko, O. O. Ponomarchuk, et al., Cell. Physiol. Biochem. 39 (1), 81 (2016)

    Article  Google Scholar 

  7. 7

    S. V. Sidorenko, O. G. Luneva, T. S. Novozhilova, et al., Biochemistry, Suppl. Ser. A 12 (2), 114 (2018)

    Google Scholar 

  8. 8

    N. A. Brazhe, S. Abdali, A. R. Brazhe, et al., Biophys. J. 97 (12), 3206 (2009)

    ADS  Article  Google Scholar 

  9. 9

    B. R. Wood and D. McNaughton, Biopolymers 67 (4–5), 1691 (2002)

  10. 10

    G. V. Maksimov, N. V. Maksimova, A. A. Churin, et al., Biochemistry (Moscow) 66 (3), 295 (2001)

    Article  Google Scholar 

  11. 11

    S. C. Goheen, L. J. Lis, O. Kucuk, et al., J. Raman Spectrosc. 24 (9), 275 (1993)

    ADS  Article  Google Scholar 

  12. 12

    N. Parthasarathi, C. Hansen, S. Yamaguchi, et al., J. Am. Chem. Soc. 109 (13), 3865 (1987)

    Article  Google Scholar 

  13. 13

    B. R. Wood, P. Caspers, G. J. Puppels, et al., Anal. Bioanal. Chem. 387 (5), 1691 (2007)

    Article  Google Scholar 

  14. 14

    S. Nagatomo, M. Nagai, Y. Mizutani, et al., Biophys. J. 89 (2), 1203 (2005)

    Article  Google Scholar 

  15. 15

    S. Choi, T. G. Spiro, K. C. Langry, et al., J. Am. Chem. Soc. 104 (16), 4345 (1982)

    Article  Google Scholar 

  16. 16

    N. K. Howell, G. Arteaga, S. Nakai, et al., J. Agricult. Food Chem. 47 (3), 924 (1999)

    Article  Google Scholar 

  17. 17

    H. Lowry, N. J. Rosebrough, A. L. Farr, et al., J. Biol. Chem. 193, 265 (1951)

    Google Scholar 

  18. 18

    S. V. Sidorenko, R. H. Ziganshin, O. G. Luneva, et al., J. Proteomics 184, 25 (2018)

    Article  Google Scholar 

  19. 19

    I. P. Torres Filho, J. Terner, R. N. Pittman, et al., J. Appl. Physiol. 104 (6), 1809 (2008)

    Article  Google Scholar 

  20. 20

    I. A. Tikhomirova, A. V. Murav’ev, L. A. Mikhailichenko, et al., Human Physiol. 32 (6), 748 (2006)

    Article  Google Scholar 

  21. 21

    K. M. Marzec, D. Perez-Guaita, M. De Veij, et al., ChemPhysChem 15 (18), 3963 (2014)

    Article  Google Scholar 

  22. 22

    B. R. Wood, L. Hammer, and D. McNaughton, Vib. Spectrosc. 38 (1-2), 78 (2005)

    Article  Google Scholar 

  23. 23

    J. Surmacki, R. Musial, R. Kordek, et al., Mol. Cancer 12 (1), 48 (2013)

    Article  Google Scholar 

  24. 24

    M. Nagai, N. Mizusawa, T. Kitagawa, et al., Biophys. Rev. 10 (2), 271 (2018)

    Article  Google Scholar 

  25. 25

    J. M. Friedman, T. W. Scott, R. A. Stepnoski, et al., J. Biol. Chem. 258 (17), 10564 (1983)

    Google Scholar 

  26. 26

    S. Nagatomo, M. Nagai, and T. Kitagawa, J. Am. Chem. Soc. 133 (26), 10101 (2011)

    Article  Google Scholar 

  27. 27

    S. N. Orlov, Byull. Sib. Med. 18 (2), 234 (2019)

    Article  Google Scholar 

  28. 28

    A. A. Semenova, A. P. Semenov, E. A. Gudilina, et al., Mendeleev Commun. 26 (3), 177 (2016).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to O. V. Slatinskaya or G. V. Maksimov.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement of compliance with standards of research involving humans as subjects. All procedures performed in studies involving human participants were in accordance with the ethical standards of the 1964 Helsinki Declaration and its later amendments. Informed consent was voluntarily provided by all individual participants involved in the study.

Additional information

Translated by T. Tkacheva

Abbreviations: Hb, hemoglobin; RS, Raman spectroscopy.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Slatinskaya, O.V., Luneva, O.G., Deev, L.I. et al. Conformational Changes that occur in Heme and Globin upon Temperature Variations and Normobaric Hypoxia. BIOPHYSICS 65, 213–221 (2020). https://doi.org/10.1134/S0006350920020220

Download citation

  • Keywords: hemoglobin
  • red blood cells
  • Raman spectroscopy
  • hypoxia