Skip to main content
Log in

The Topology of the Contacts of Potential Ligands for the UxuR Transcription Factor of Escherichia coli as Revealed by Flexible Molecular Docking

  • MOLECULAR BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

UxuR is a transcription factor that controls the expression of genes involved in hexuronate utilization. Its ability to bind to the promoters of regulated genes is dependent on sugar ligands. Two regions of the preferred interaction with D-glucuronate and D-galacturonate were found on the surface of the UxuR monomer earlier, one of which was located in the flexible linker connecting the N- and C-terminal domains of the protein. Binding of a ligand in this region may change the mutual orientation of the domains, thereby affecting the interaction of UxuR with DNA. The second binding region was found within the pocket of the C-terminal domain from where the regulatory effect may be explained either by conformational changes in the domain, or by influence of sugar ligands on the protein dimerization. Here, a 3D-model of the UxuR dimer was obtained and molecular docking of a range of sugars on its surface was performed. Additional platform for carbohydrate binding was found in the junction of the two C-terminal domains in the UxuR dimer. Interdomain linkers were occupied by different sugars including those that were able to penetrate into the pockets of the C-terminal domains from the side of interdomain space. Potentially, this allows transposing regulatory signal derived from the pocket loading into the conformation transition that changes mutual orientation of the domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. D. E. Chang, D. J. Smalley, D. L. Tucker, et al., Proc. Natl. Acad. Sci. U. S. A. 101, 7427 (2004).

    Article  ADS  Google Scholar 

  2. A. J. Fabich, S. A. Jones, F. Z. Chowdhury, et al., Infect. Immun. 76, 1143 (2008).

    Article  Google Scholar 

  3. N. Peekhaus and T. Conway, J. Bacteriol. 180, 3495 (1998).

    Google Scholar 

  4. N. J. Sweeney, D. C. Laux, and P. S. Cohen, Infect. Immun. 64, 3504 (1996).

    Google Scholar 

  5. A. Ashwell, A. J. Wahba, and J. Hickman, Biochim. Biophys. Acta 30, 186 (1958).

    Article  Google Scholar 

  6. A. Ashwell, A. J. Wahba, and J. Hickman, J. Biol. Chem. 235, 1559 (1960).

    Google Scholar 

  7. P. Ritzenthaler, M. Mata-Gilsinger, and F. Stoeber, J. Bacteriol. 143, 1116 (1980).

    Google Scholar 

  8. R. Portalier, J. Robert-Baudouy, and F. Stoeber, J. Bacteriol. 143, 1095 (1980).

    Google Scholar 

  9. D. A. Rodionov, A. A. Mironov, A. B. Rakhmaninova, and M. S. Gelfand, Mol. Microbiol. 38, 673 (2000).

    Article  Google Scholar 

  10. P. Ritzenthaler and M. Mata-Gilsinger, J. Bacteriol. 150, 1040 (1982).

    Google Scholar 

  11. I. A. Suvorova, M. N. Tutukina, D. A. Ravcheev, et al., J. Bacteriol. 193, 3956 (2011).

    Article  Google Scholar 

  12. S. Rigali, A. Derouaux, F. Giannotta, and J. Dusart, J. Biol. Chem. 277, 12507 (2002).

    Article  Google Scholar 

  13. C. Bates Utz, A. B., Nguyen, D. J. Smalley, et al., J. Bacteriol. 186, 7690 (2004).

    Article  Google Scholar 

  14. M. N. Tutukina, A. V. Potapova, J. A. Cole, and O. N. Ozoline, Microbiology 162, 1220 (2016).

    Article  Google Scholar 

  15. T. Lengauer and M. Rarey, Curr. Opin. Struct. Biol. 6, 402 (1996).

    Article  Google Scholar 

  16. S. F. Sousa, A. J. Ribeiro, J. T. Coimbra, et al., Curr. Med. Chem. 20, 2296 (2013).

    Article  Google Scholar 

  17. T. A. Bessonova, S. A. Shumeiko, Yu. A. Purtov, et al., Biophysics (Moscow) 61 (6), 825 (2016).

    Article  Google Scholar 

  18. N. M. O’Boyle, M. Banck, C. A. James, et al., J. Cheminform. 3, 33 (2011).

    Article  Google Scholar 

  19. M. D. Hanwell, D. E. Curtis, D. C. Lonie, et al., J. Cheminform. 4 (1), 17 (2012).

    Article  Google Scholar 

  20. M. Riley, T. Abe, M. B. Arnaud, et al., Nucleic Acids Res. 34 (1), 1 (2006).

    Article  Google Scholar 

  21. A. Waterhouse, M. Bertoni, S. Bienert, et al., Nucleic Acids Res. 46 (W1), W296 (2018).

    Article  Google Scholar 

  22. M. S. Little, S. J. Pellock, W. G. Walton, et al., Proc. Natl. Acad. Sci. U. S. A. 115, E152 (2018).

    Article  Google Scholar 

  23. N. Guex and M. C. Peitsch, Electrophoresis 18, 2714 (1997).

    Article  Google Scholar 

  24. M. S. Friedrichs, P. Eastman, V. Vaidyanathan, et al., J. Comput. Chem. 30, 864 (2009).

    Article  Google Scholar 

  25. O. Trott and A. J. Olson, J. Comput. Chem. 31, 455 (2010).

    Google Scholar 

  26. G. M. Morris, R. Huey, W. Lindstrom, J. Comput. Chem. 30, 2785 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. N. Ozoline.

Additional information

Translated by E. Puchkov

Abbreviations: CTD, C-terminal domain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Purtov, Y.A., Tutukina, M.N., Nikulin, A.D. et al. The Topology of the Contacts of Potential Ligands for the UxuR Transcription Factor of Escherichia coli as Revealed by Flexible Molecular Docking. BIOPHYSICS 64, 49–56 (2019). https://doi.org/10.1134/S0006350919010160

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350919010160

Keywords:

Navigation