Skip to main content
Log in

The Effect of Sodium Selenite on the Expression of Genes of Endoplasmic Reticulum-Resident Selenoproteins in Human Fibrosarcoma Cells

  • MOLECULAR BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract—Sodium selenite, which is one of the most common selenium compounds, is considered a potential anticancer agent that can decrease cell viability; this compound is present in many types of malignant cells. Oxidative stress contributes to malignant transformation, in particular, by inducing prolonged endoplasmic reticulum stress due to a dramatic increase in free-radical levels. Selenoproteins are oxidoreductases that exhibit antioxidant activity due to the presence of selenium; thus, the need occurs to investigate the role of selenoproteins in the regulation of carcinogenic processes, with a focus on selenoproteins associated with the endoplasmic reticulum, which is an organelle with a high level of redox activity. Almost one-third of the currently known human selenoproteins are located in the endoplasmic reticulum; some of these have been shown to participate in the regulation of processes associated with stress of the endoplasmic reticulum in different types of tumor cells. In this work, changes in the expression patterns of endoplasmic reticulum-resident selenoprotein genes, as well as of key genes involved in the regulation of endoplasmic reticulum stress, were studied in human fibrosarcoma cells exposed to sodium selenite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. C. Lavoie and J. Paiement, Histochem. Cell Biol. 129, 117 (2010).

    Article  Google Scholar 

  2. K. Powell and M. Latterich, Traffic 1, 689 (2000).

    Article  Google Scholar 

  3. G. Voeltz, M. Rolls, and T. Rapoport, EMBO Rep. 3, 944 (2002).

    Article  Google Scholar 

  4. C. Hwang, A. J. Sinskey, and H. F. Lodish, Science 257, (1992).

  5. C. M. Haynes, E. A. Titus, and A. A. Cooper, Mol. Cell 15, 767 (2004).

    Article  Google Scholar 

  6. M. Kitamura and N. Hiramatsu, Biometals 23, 941 (2010).

    Article  Google Scholar 

  7. B. J. Lee, M. Rajagonpalan, Y. S. Kim, et al, Mol. Cell. Biol. 10, 1940 (1990).

    Article  Google Scholar 

  8. C. Liu, H. Liu, Y. Li, et al., Mol. Carcinog. 51, 303 (2012).

    Article  Google Scholar 

  9. C. M. Weekley, G. Jeong, M. E. Tierney, et al., J. Biol. Inorg. Chem. 19, 813 (2014).

    Article  Google Scholar 

  10. R. R. Ramoutar and J. L. Brumaghim, Cell. Biochem. Biophys. 58, 1 (2010).

    Article  Google Scholar 

  11. K. Zu, T. Bihani, A. Lin, et al., Oncogene 25, 546 (2006).

    Article  Google Scholar 

  12. H. Puthalakath, L. A. O’Reilly, P. Gunn, et al., Cell 129, 1337 (2007).

    Article  Google Scholar 

  13. S. C. Cazanave, N. A. Elmi, Y. Akazawa, et al., Am. J. Physiol. Gastrointest. Liver Physiol. 299, G236 (2010).

    Article  Google Scholar 

  14. E. G. Varlamova, M. V. Goltyaev, V. I. Novoselov, and E. E. Fesenko, Dokl. Biochem. Biophys. 476 (1), 320 (2017).

    Article  Google Scholar 

  15. K. D. McCullough, J. L. Martindale, L. O. Klotz, et al., Mol. Cell. Biol. 21, 1249 (2001).

    Article  Google Scholar 

  16. A. L. Anding, J. S. Chapman, D. W. Barnett, et al., Cancer Res. 67, 6270 (2007).

    Article  Google Scholar 

  17. R. V. Rao, S. Castro-Obregon, H. Frankowski, et al., J. Biol. Chem. 277, 21836 (2002).

    Article  Google Scholar 

  18. N. Morishima, K. Nakanishi, H. Takenouchi, et al., J. Biol. Chem. 277, 34287 (2002).

    Article  Google Scholar 

  19. E. Szegezdi, S. E. Logue, A. M. Gorman, and A. Samali, EMBO Rep. 7 (9), 880 (2006).

    Article  Google Scholar 

  20. M. Kitamura, Am. J. Physiol. Renal Physiol. 295 (2), F323 (2008).

    Article  Google Scholar 

  21. R. Inagi, Nephron. Exp. Nephrol. 112 (1), e1 (2009).

    Article  Google Scholar 

  22. J. D. Malhotra and R. J. Kaufman, Antioxid. Redox Signal. 9, 2277 (2007).

    Article  Google Scholar 

  23. D. Ron and P. Walter, Nat. Rev. Mol. Cell. Biol. 8, 519 (2007).

    Article  Google Scholar 

  24. K. Zhang and D. J. Kaufman, Methods Enzymol. 442, 395 (2008).

    Article  Google Scholar 

  25. J. G. Dickhout and J. C. Krepinsky, Antioxid. Redox Signal. 11 (9), 2341 (2009).

    Article  Google Scholar 

  26. H. Puthalakath, L. A. O’Reilly, P. Gunn, et al., Cell 129, 1337 (2007).

    Article  Google Scholar 

  27. Y. Ye, Y. Shibata, C. Yun, D. Ron, and T. A. Rapoport, Nature 429, 841 (2004).

    Article  ADS  Google Scholar 

  28. Y. Oda, T. Okada, H. Yoshida, et al., J. Cell. Biol. 172, 383 (2006).

    Article  Google Scholar 

  29. B. N. Lilley and H. L. Ploegh, Proc. Natl. Acad. Sci. U. S. A. 102, 14296 (2005).

    Article  ADS  Google Scholar 

  30. Y. Ye, Y. Shibata, M. Kikkert, et al., Proc. Natl. Acad. Sci. U. S. A. 102, 14132 (2005).

    Article  ADS  Google Scholar 

  31. V. A. Shchedrina, R. A. Everley, Y. Zhang, et al., J. Biol. Chem. 286, 42937 (2011).

    Article  Google Scholar 

  32. V. M. Labunskyy, M. H. Yoo, D. L. Hatfield, and V. N. Gladyshev, Biochemistry 48, 8458 (2009).

    Article  Google Scholar 

  33. S. B. Baylin, J. G. Herman, J. R. Graff, et al., Adv. Cancer Res. 72, 141 (1998).

    Article  Google Scholar 

  34. Z. R. Stoytcheva and M. J. Berry, Biochim. Biophys. Acta 1790, 1429 (2009).

    Article  Google Scholar 

  35. S. Arbogast and A. Ferreiro, Antioxid. Redox Signal. 12, 893 (2010).

    Article  Google Scholar 

  36. M. W. Pitts and P. R. Hoffmann, Cell Calcium 70, 76 (2017). doi 10.1016/j.ceca.2017.05.001

    Article  Google Scholar 

  37. C. Curcio, M. M. Baqui, D. Salvatore, et al., J. Biol. Chem. 276, 30183 (2001).

    Article  Google Scholar 

  38. R. A. Drigo, T. L. Fonseca, M. Castillo, et al., Mol. Endocrinol. 25, 2065 (2011).

    Article  Google Scholar 

  39. E. G. Varlamova, M. V. Goltyaev, and E. E. Fesenko, Dokl. Biochem. Biophys. 468 (1), 203 (2016).

    Article  Google Scholar 

  40. E. G. Varlamova and I. V. Cheremushkina, J. Trace Elem. Med. Biol. 39, 76 (2017).

    Article  Google Scholar 

  41. Q. Wang, J. Huang, H. Zhang, et al., Biol. Trace Elem. Res. 176, 407 (2017).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research (projects nos. 17-04-00356 and 18-34-00118 mol_a) and a grant from the President of the Russian Federation for young scientists and post-graduate students (SP-2059.2016.4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Varlamova.

Additional information

Translated by D. Timchenko

Abbreviations: ER, endoplasmic reticulum; UPR, unfolded protein response; ROS, reactive oxygen species; CHOP, C/EBP-homologous protein; D2, iodothyronine deiodinase 2; SELK, SELN, SELS, SELM, SELT, SELI, and SEP15, selenoproteins K, N, S, M, T, I, and 15, respectively; GADD34, growth arrest and DNA damage protein 34; PCR, polymerase chain reaction.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varlamova, E.G., Goltyaev, M.V. The Effect of Sodium Selenite on the Expression of Genes of Endoplasmic Reticulum-Resident Selenoproteins in Human Fibrosarcoma Cells. BIOPHYSICS 63, 700–705 (2018). https://doi.org/10.1134/S000635091805024X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000635091805024X

Navigation