Skip to main content
Log in

Microwave-Induced Structural Changes in Bacteriorhodopsin: Studies by Optical and Fourier Transform Infrared Difference Spectroscopy

  • CELL BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract—Using optical and Fourier transform infrared (FTIR) difference spectroscopy, microwave radiation was found to affect the bacteriorhodopsin (BR) structure in films at a 30% relative humidity. This study is the first to demonstrate that a transition from the dark-adapted basal state BR560 to a state similar to the light-adapted state BR568, which is a mixture of BR568 and other isomeric forms, occurs in the absence of external photoexcitation on exposure to microwave radiation with a frequency range of 8 ≤ f ≤ 18 GHz and an intensity lower than 10 mW/cm2. The initial response of dark-adapted BR to microwave radiation included collective motion of a large portion of protein atoms, producing relatively strong signals in the regions 3700–3300, 2400–2300, and 800–600 cm–1 of the FTIR difference spectrum. Relatively weak amplitude responses were detected in the frequency range characteristics of the retinal chromophore and amide bands (Amide I and Amide II). The effects reflected changes in the retinal chromophore structure and local changes in the chromophore microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. R. H. Lozier, R. A. Bogomolni, and W. Stoeckenius, Biophys. J. 15 (9), 955 (1975).

    Article  ADS  Google Scholar 

  2. W. Stoeckenius, R. H. Lozier, and R. A. Bogomolni, Biochim. Biophys. Acta 505, 215 (1979).

    Article  Google Scholar 

  3. L. A. Drachev, A. D. Kaulen, and V. P. Skulachev, FEBS Lett. 87 (1), 161 (1978).

    Article  Google Scholar 

  4. S. P. Balashov and F. F. Litvin, Biofizika 26, 557 (1981).

    Google Scholar 

  5. S. P. Balashov, Isr. J. Chem. 35, 415 (1995).

    Article  Google Scholar 

  6. B. M. Becher and J. Y. Cassim, Prep. Biochem. 5 (2), 161 (1975).

    Google Scholar 

  7. T. Kouyma, R. A. Bogomolni, and W. Stoeckenius, Biophys. J. 48 (2), 201 (1985).

    Article  Google Scholar 

  8. P. Scherrer, M. K. Mathew, W. Sperling, et al., Biochemistry 28 (2), 829 (1989).

    Article  Google Scholar 

  9. G. S. Harbison, S. O. Smith, J. A. Pardoen, et al., Proc. Natl. Acad. Sci U. S. A. 81 (6) 1706 (1984).

    Article  ADS  Google Scholar 

  10. D. L. Chen, G. Y. Wang, B. Xu, et al., J. Photochem. Photobiol. B 66 (3), 188 (2002).

    Article  Google Scholar 

  11. A. Maeda, T. Iwasa, and T. Yoshizawa, Biochemistry 19 (16), 3825 (1980).

    Article  Google Scholar 

  12. P. C. Mowery, R. H. Lozier, Q. Chae, et al., Biochemistry 18 (19) 4100 (1979).

    Article  Google Scholar 

  13. N. A. Dencher, K. D. Kohl, and M. P. Heyn, Biochemistry 22 (6), 1323 (1983).

    Article  Google Scholar 

  14. L. S. Brown and S. K. Chamorovsky, Photochem. Photobiol. B: Biol. 18 (2–3), 123 (1993).

  15. P. Hildebrandt and M. Stockburger, Biochemistry 23, 5539 (1984).

    Article  Google Scholar 

  16. M. Tsuda and T. G. Ebrey, Biophys. J. 30 (1), 149 (1980).

    Article  ADS  Google Scholar 

  17. A. Schulte and L. Bradley, Biophys. J. 69 (4), 1554 (1995).

    Article  ADS  Google Scholar 

  18. K. Bryl and K. Yoshihara, Eur. Biophys. J. 31 (7), 539 (2002).

    Article  Google Scholar 

  19. R. R. Birge, D. S. K. Govender, K. Can Izgi, et al., J. Phys. Chem. 100 (23), 9990 (1996).

    Article  Google Scholar 

  20. R. F. Cleveland and J. L. Ubase, OET Bull. 56, 1 (1999).

  21. H. Bohr and J. Bohr, Phys. Rev. 61 (4) 4310 (2000).

    ADS  Google Scholar 

  22. E. E. Fesenko and A. Yu. Gluvstein, FEBS Lett. 367, 53 (1995).

    Article  Google Scholar 

  23. R. K. Adair, Bioelectromagnetics 24 (1) 39 (2003).

    Article  Google Scholar 

  24. E. E. Fesenko, V. I. Geletyuk, V. N. Kazachenko, et al., FEBS Lett. 366, 49 (1995).

    Article  Google Scholar 

  25. I. Y. Belyaev, Y. D. Alipov, and A. Y. Matronchik, Biolectomagnetics 19 (5) 300 (1998).

    Article  Google Scholar 

  26. A. B. Gapeev, V. S. Iakushina, N. K. Chemeris, et al., Biofizika 41 (1), 205 (1996).

    Google Scholar 

  27. A. B. Gapeev, V. S. Iakushina, N. K. Chemeris, et al., Biofizika 42 (5), 1125 (1997).

    Google Scholar 

  28. R. Goodman and A. S. Henderson, Biolelectromagnetics 1 (7), 23 (1986).

    Article  Google Scholar 

  29. D. Oesterhelt and W. Stoechenius, Methods Ensymol. 31, 667 (1974).

    Article  Google Scholar 

  30. M. A. Berliner, Moisture Measurement (Energiya, Moscow,1973) [in Russian].

    Google Scholar 

  31. E. L. Terpugov, Yu. A. Lazarev, and L. N. Chekuaeva, Mol. Biol. (Moscow) 16 (4), 8130 (1982).

    Google Scholar 

  32. A. A. Balashov, V. A. Vagin, A. V. Viskovatich, et al., Proc. SPIE 1575, 182 (1991).

    Article  ADS  Google Scholar 

  33. P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectroscopy (Wiley, New York, 1986).

    Google Scholar 

  34. A. Maeda, T. Iwasa, and T. Yoshizawa, J. Biochem. 82 (6), 1599 (1977).

    Article  Google Scholar 

  35. K. Gerwert and F. Siebert, EMBO J. 5 (4), 805 (1986).

    Article  Google Scholar 

  36. I. Logunov and K. Schulten, J. Am. Chem. Soc. 118, 9727 (1996).

    Article  Google Scholar 

  37. I. Logunov, W. Humphrey, K. Schulten, et al., Biophys. J. 68 (4), 1270 (1995).

    Article  Google Scholar 

  38. R. A. Mathies, S. W. Lin, J. B. Ames, et al., Annu. Rev. Biophys. Biophys. Chem. 20, 491 (1991).

    Article  Google Scholar 

  39. R. R. Birge, Biochim. Biophys. Acta–Bioenergetics 1016 (3), 293 (1990).

  40. D. Oesterhelt, J. Tittor, and E. Bamberg, J. Bioenerg. Biomembr. 24, 181 (1992).

    Article  Google Scholar 

  41. F. Gai, K. C. Hasson, J. C. McDonald, et al., Science 279 (5358), 1886 (1998).

    Article  ADS  Google Scholar 

  42. A. Maeda, Isr. J. Chem. 35, 387 (1995).

    Article  Google Scholar 

  43. L. J. Bellamy, The Infra-Red Spectra of Complex Molecules, 3rd ed. (Halsted Press, New York, 1975).

    Book  Google Scholar 

  44. A. Maeda, Biochemistry (Moscow) 66 (11), 1256 (2001).

    Article  Google Scholar 

  45. K. J. Rothshild, J. Bioenerg. Biomembr. 24 (2) 147 (1992).

    Article  Google Scholar 

  46. A. K. Dioumaev, Biochemistry (Moscow) 66 (11), 1269 (2001).

    Article  Google Scholar 

  47. S. O. Smith, J. Lugtenburg, and R. A. Mathies, J. Membr. Biol. 85 (2), 95 (1985).

    Article  Google Scholar 

  48. S. O. Smith, A. B. Myers, J. A. Pardoen, et al., Proc. Natl. Acad. Sci. U. S. A. 81 (7) 2055 (1984).

    Article  ADS  Google Scholar 

  49. S. O. Smith, J. A. Pardoen, J. Lugtenburg, et al., J. Phys. Chem. 91 (4), 804 (1987).

    Article  Google Scholar 

  50. S. Y. Venyaminov and N. N. Kalnin, Biopolymers 30 (13–14), 1243 (1990).

  51. Yu. N. Chirgadze and N. A. Nevskaya, Biopolymers 15 (4), 637 (1976).

    Article  Google Scholar 

  52. Y. N. Chirgadze, O. V. Fedorov, and N. P. Trushina, Biopolymers 14 (4), 679 (1975).

    Article  Google Scholar 

  53. B. Nie, J. Stutzman, and A. Xie, Biophys. J. 88 (4), 2833 (2005).

    Article  Google Scholar 

  54. S. Krimm and A. M. Dwivedi, Science 216 (4544), 407 (1982).

    Article  ADS  Google Scholar 

  55. T. Miyazawa, J. Am. Chem. Soc. 83 (3), 712 (1961).

    Article  Google Scholar 

  56. J. Bandekar, Biochim. Biophys. Acta 1120 (2) 123 (1992)

    Article  Google Scholar 

  57. P. Hamm, M. H. Lim, and R. M. Hochstrasser, J. Phys. Chem. B 102 (31), 6123 (1998).

    Article  Google Scholar 

  58. H. Kandori, Biochim. Biophys. Acta 1460 (1), 177 (2000).

    Article  Google Scholar 

  59. H. Kandori, M. Shibata, and Y. Furutani, Photochem. Photobiol. Sci. 4 (9), 661 (2005).

    Article  Google Scholar 

  60. G. Herzberg, Molecular Spectra and Molecular Structure, Part 2: Infrared and Raman Spectra of Polyatomic Molecules (Van Nostrand Comp., New York, 1945).

    Google Scholar 

  61. M. Wolpert and P. Hellwig, Spectochim. Acta A 64 (4), 987 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. L. Terpugov.

Additional information

Translated by T. Tkacheva

Abbreviations: BR, bacteriorhodopsin; IR, infrared

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terpugov, E.L., Degtyareva, O.V. & Fesenko, E.E. Microwave-Induced Structural Changes in Bacteriorhodopsin: Studies by Optical and Fourier Transform Infrared Difference Spectroscopy. BIOPHYSICS 63, 706–712 (2018). https://doi.org/10.1134/S0006350918050226

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350918050226

Navigation