Skip to main content
Log in

Continuous In Vivo Monitoring of the Oxygen Concentration in Tissues

  • COMPLEX SYSTEMS BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract—The kinetics of delayed fluorescence and phosphorescence of xanthene dyes in mouse tissues under the pulse-periodic excitation of molecules was studied in vivo and in vitro. The advantages of continuous monitoring of oxygen content in tissues by the kinetics of delayed fluorescence caused by singlet–triplet annihilation of singlet oxygen with triplet excitation of fluorophore are demonstrated. A method is proposed for determining the time of recovery of the concentration of oxygen consumed in tissues in vivo and in vitro during photodynamic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. J. Dings, J. Meixensberger, A. Jäger, and K. Roosen, Neurosurgery 43 (5), 1082 (1998).

    Article  Google Scholar 

  2. I. A. Shusygin, Respiration Monitoring: Pulse Oximetry, Capnography, Oximetery) (BINOM, Moscow, 2000) [in Russian].

  3. J. R. Bacon and J. N. Demas, Anal. Chem. 59 (23), 2780 (1987).

    Article  Google Scholar 

  4. D. R. Collingridge, W. K. Young, B. Vojnovic, et al., Radiat. Res. 147 (3), 329 (1997).

    Article  ADS  Google Scholar 

  5. W. K. Young, B. Vojnovica, and P. Wardman, Br. J. Cancer 74 (Suppl. XXVII), S256 (1996).

    Google Scholar 

  6. A. A. Krasnovsky, Jr., Biophysics (Moscow) 49 (2), 289 (2004).

    Google Scholar 

  7. T. Nyokong and V. Ahsen, Photosensitizers in Medicine, Environment, and Security (Springer, Dordrecht, 2012).

    Book  Google Scholar 

  8. Y. Shen, H. Lin, Z. Huang, et al., Laser Phys. Lett. 8, 232 (2011).

    Article  ADS  Google Scholar 

  9. E. G. Mik, T. Johannes, C. J. Zuurbier, et al., Biophys. J. 95, 3977 (2008).

    Article  ADS  Google Scholar 

  10. S. N. Letuta, A. F. Kuvandykova, and S. N. Pashkevich, J. Anal. Oncology 1 (1), 107 (2012).

    Google Scholar 

  11. C. A. Parker, Photoluminescence of Solutions: With Applications to Photochemistry and Analytical Chemistry (Elsevier, Amsterdam, 1968; Mir, Moscow, 1972).

  12. S. N. Letuta, V. S. Maryakhina, S. N. Pashkevich, and R. R. Rakhmatullin, Opt. Spectrosc. 110 (1), 67 (2011).

    Article  ADS  Google Scholar 

  13. K. Jahn, V. Buschmann, and C. Hille, Sci. Rep. 5, 14334 (2015).

    Article  ADS  Google Scholar 

  14. I. S. Vinklarek, M. Scholz, R. Dědic, and J. Hala, Photochem. Photobiol. Sci. 16, 507 (2017).

    Article  Google Scholar 

  15. M. Scholz, A.L. Biehl, R. Dědic, and J. Hála, Photochem. Photobiol. Sci. 14, 700 (2015).

    Article  Google Scholar 

  16. M. Scholz and R. Dědic, in Singlet Oxygen: Applications in Biosciences and Nanosciences, Ed. by S. Nonell and C. Flors (Roy. Soc. of Chemistry, London, 2016), Vol. 2, pp. 63–81.

  17. M. G. Kucherenko, M. P. Melnik, G. A. Ketzle, and S. N. Letuta, Opt. Sprektrosk. 78 (4), 649 (1995).

    Google Scholar 

  18. A. A. Krasnovsky Jr., Biochemistry 72 (10), 1065 (2007).

    Google Scholar 

  19. S. N. Letuta, A. T. Ishemgulov, S. N. Pashkevich, et al., Vestn. Orenburg. Gos. Univ., 13, 175 (2015).

    Google Scholar 

  20. S. N. Letuta, A. F. Kuvandykova, S. N. Pashkevich, and A. M. Saletskii, Russ. J. Phys. Chem. A 87 (9), 1582 (2013).

    Article  Google Scholar 

  21. A. T. Ishemgulov, S. N. Letuta, S. N. Pashkevich, et al., Opt. Spectrosc. 123 (5), 828 (2017).

    Article  ADS  Google Scholar 

  22. M. G. Kucherenko, Kinetics of Nonlinear Processes in Condensed Molecular Systems (Orenburg. State Univ., Orenburg, 1997) [in Russian].

  23. E. V. Moiseeva, Original Approaches to Test Anti-breast Cancer Drugs in a Novel Set of Mouse Models (Proefschrift Universiteit, Utrecht, 2005).

    Google Scholar 

  24. A. Townshend, D. T. Burns, R. Lobinski, et al., Dictionary of Analytical Reagents (CRC Press, 1993).

    Google Scholar 

  25. H. S. Soedjak, Anal. Biochem. 220, 142 (1994).

    Article  Google Scholar 

  26. K. K. Rohatgi-Mukherjee and A. K. Mukhopadhyay, Ind. J. Pure Appl. Phys. 14 (6), 481 (1976).

    Google Scholar 

  27. S. N. Letuta, S. N. Pashkevich, A. T. Ishemgulov, et al., J. Photochem. Photobiol. B: Biol. 163, 232 (2016).

    Article  Google Scholar 

  28. Y. Hirakawa, Sci. Rep. 5, 17838 (2015).

    Article  ADS  Google Scholar 

  29. S. V. Apreleva, D. F. Wilson, and S. A. Vinogradov, Appl. Opt. 45 (33), 8547 (2006).

    Article  ADS  Google Scholar 

Download references

АСKNОWLЕDGMЕNTS

The work was supported by the Ministry of Science and Higher Education of the Russian Federation, project no. 3.6358.2017/BCh, and the Russian Foundation for Basic Research, project no. 17-32-50051.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Letuta.

Additional information

Translated by O. Zhukova

Abbreviations: PDT, photodynamic therapy; DF, delayed fluorescence.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Letuta, S.N., Ishemgulov, A.T., Letuta, U.G. et al. Continuous In Vivo Monitoring of the Oxygen Concentration in Tissues. BIOPHYSICS 63, 798–804 (2018). https://doi.org/10.1134/S0006350918050160

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350918050160

Navigation