Skip to main content
Log in

The Adhesiveness of the OmpF and OmpC Porins from Yersinia pseudotuberculosis to J774 Macrophages

  • CELL BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract—The significance of the Yersinia pseudotuberculosis porins OmpF and OmpC for adhesion to macrophages J774 was assessed using optical trapping. The passive sensitization of polystyrene microspheres with the preparations of these porins was verified. Using a set of differently functionalized microspheres, it was shown that OmpF produced at a lower culture temperature contributes to the adhesiveness of the bacteria Y. pseudotuberculosis to macrophages, while OmpC synthesized at a temperature of 37°C does not have this property. These results can be explained by thermoinducible differences in the primary structure and conformational features of the outer loops of porin molecules. These differences are suggested to be necessary for effective circulation in the environment and manifestation of the invasive properties of Y. pseudotuberculosis as an agent of saprozoonotic infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. V. Zav’yalov, A. Zavialov, G. Zav’yalova, et al., FEMS Microbiol. Rev. 34 (3), 317 (2010).

    Article  Google Scholar 

  2. K. M. Mikula, R. Kolodziejczyk, and A. Goldman, Front. Cell. Infect. Microbiol. 2, 1 (2012).

    Google Scholar 

  3. W. Achouak, R. De Mot, and T. Heulin, FEMS Microbiol. Ecol. 16 (1), 19 (1994).

    Article  Google Scholar 

  4. G. Hemery, S. Chevalier, M. N. Bellon-Fontaine, et al., J. Ind. Microbiol. Biotechnol. 34 (1), 49 (2007).

    Article  Google Scholar 

  5. N. Rolhion, F. A. Carvalho, and A. Darfeuille-Michaud, Mol. Microbiol. 63 (6), 1684 (2007).

    Article  Google Scholar 

  6. B. B. Hara-Kaonga and T. G. Pistole, Can. J. Microbiol. 50 (9), 719 (2004).

    Article  Google Scholar 

  7. R. S. Negm and T. G. Pistole, Can. J. Microbiol. 45 (8), 658 (1999).

    Article  Google Scholar 

  8. R. S. Negm and T. G. Pistole, FEMS Immunol. Med. Microbiol. 20 (3), 191 (1998).

    Article  Google Scholar 

  9. H. M. A. Hejair, Y. Zhu, J. Ma, et al., Microb. Pathog. 107, 29 (2017).

    Article  Google Scholar 

  10. C. M. Beck, J. L. Willett, D. A. Cunningham, et al., PLoS Pathog. 12 (10), e1005925 (2016).

    Article  Google Scholar 

  11. J. C. Leo and M. Skurnik, Adv. Exp. Med. Biol. 715, 1 (2011).

    Article  Google Scholar 

  12. N. Chauhan, A. Wrobel, M. Skurnik, et al., Proteomics Clin. Appl. 10 (9–10), 949 (2016).

  13. M. B. Lawrenz, J. D. Lenz, and V. L. Miller, Infect. Immun. 77 (1), 317 (2009).

    Article  Google Scholar 

  14. M. K. Nair, L. De Masi, M. Yue, et al., Infect. Immun. 83 (5), 1809 (2015).

    Article  Google Scholar 

  15. A.-M. Krachler, H. Ham, and K. Orth, Proc. Natl. Acad. Sci. U. S. A. 108 (28), 11614 (2011).

    Article  ADS  Google Scholar 

  16. A.-M. Krachler and K. Orth, J. Biol. Chem. 286 (45), 38939 (2011).

    Article  Google Scholar 

  17. S. Mildiner-Earley and V. L. Miller, Infect. Immun. 74 (7), 4361 (2006).

    Article  Google Scholar 

  18. K. Brzostek and A. Raczkowska, Folia Microbiol. (Praha) 52, 73 (2007).

    Article  Google Scholar 

  19. N. F. Timchenko, O. D. Novikova, I. M. Ermak, et al., Zh. Mikrobiol. 6, 38 (1986).

    Google Scholar 

  20. A. A. Byvalov, V. L. Kononenko, and I. V. Konyshev, Appl. Biochem. Microbiol. 53 (2), 258 (2017).

    Article  Google Scholar 

  21. O. D. Novikova, V. A. Khomenko, V. I. Emelyanenko, et al., Biol. Membrany 28 (1), 1 (2011).

    Article  Google Scholar 

  22. B. W. Silverman, Density Estimation for Statistics and Data Analysis (Chapman and Hall, London, 1986).

    Book  MATH  Google Scholar 

  23. W. Achouak, T. Heulin, and J. P. Pages, FEMS Microbiol. Lett. 199 (1), 1 (2001).

    Article  Google Scholar 

  24. A. A. Delvig and B. F. Semenov, Zh. Mikrobiol. Epidemiol. Immunol. 6, 92 (1997).

    Google Scholar 

  25. S. P. Singh, S. R. Singh, Y. U. Williams, et al., Infect. Immun. 63 (12), 4600 (2005).

    Google Scholar 

  26. K. V. Guzev, M. P. Isaeva, O. D. Novikova, et al., Biochemistry (Moscow) 70 (10), 1104 (2005).

    Article  Google Scholar 

  27. A. M. Stenkova, M. P. Isaeva, F. N. Shubin, et al., PLoS ONE 6 (5), e20546 (2011).

    Article  ADS  Google Scholar 

  28. S. Alberti, F. Rodríguez-Quiñones, T. Schirmer, et al., Infect. Immun. 63 (3), 903 (1995).

    Google Scholar 

  29. D. Fourel, A. Bernadac, and J. M. Pagès, Eur. J. Biochem. 222 (2), 625 (1994).

    Article  Google Scholar 

  30. T. D. Ho and J. M. Slauch, J. Bacteriol. 183 (4), 1495 (2001).

    Article  Google Scholar 

  31. A. M. Andrianov, Conformational Analysis of Proteins: Theory and Applications (Belaruskaya Navuka, Minsk, 2013) [in Russian].

    Google Scholar 

  32. Y. A. Knirel, S. V. Dentovskaya, S. N. Senchenkova, et al., J. Endotoxin Res. 12 (6), 3 (2006).

    Google Scholar 

  33. O. Holst, Adv. Exp. Med. Biol. 529, 219 (2003).

    Article  Google Scholar 

  34. M. Skurnik, Adv. Exp. Med. Biol. 529, 187 (2003).

    Article  Google Scholar 

  35. H. Nummeline, M. C. Merckel, Y. E. L. Tahir, et al., Adv. Exp. Med. Biol. 529, 85 (2003).

    Article  Google Scholar 

  36. G. P. Somov, V. I. Pokrovskii, N. N. Besednova, and F. F. Antonenko, Pseudotuberculosis (Meditsina, Moscow, 2001) [in Russian].

    Google Scholar 

  37. M. Achtman, K. Zurth, C. Morelli, et al. Proc. Natl. Acad. Sci. U. S. A. 96, 14043 (1999).

    Article  ADS  Google Scholar 

Download references

АСKNОWLЕDGMЕNTS

This work is supported in the framework of the State task no. 20.6834.2017/BCh of the Ministry of Education and Science of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Byvalov.

Additional information

Translated by O. Zhukova

Abbreviations: AB, antibodies; PBS, phosphate buffer solution; BSA, bovine serum albumin; ELISA, enzyme-linked immunosorbent assay; and FITC, fluorescein isothiocyanate.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Byvalov, A.A., Konyshev, I.V., Novikova, O.D. et al. The Adhesiveness of the OmpF and OmpC Porins from Yersinia pseudotuberculosis to J774 Macrophages. BIOPHYSICS 63, 727–734 (2018). https://doi.org/10.1134/S0006350918050068

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350918050068

Navigation