Skip to main content
Log in

The Influence of Hypoxic Hypoxia on the Human Ability to Identify Smells

  • COMPLEX SYSTEMS BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract—The data on the influence of hypoxic hypoxia on the human ability to identify smells are presented. The study was conducted in male volunteers aged from 18 to 20 years without ENT disorders with low tolerance to hypoxia under the supervision of a physician. The University of Pennsylvania Smell Identification Test adapted for Russians was used to evaluate the ability to identify smells. Hypoxic hypoxia was simulated by breathing with a gas mixture containing 10.5% oxygen. The oxygen level in the blood was monitored by the degree of hemoglobin oxygenation measured with a digital portable pulse oximeter. The results of the study indicate that the human ability to identify smells is disturbed under a low concentration of oxygen in inhaled air (p ≤ 0.01). Such a reduction in olfactory memory may indicate a worsening of cognitive functions of the brain under acute hypoxic hypoxia in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. V. K. Shepeleva, Essays on the Functional Properties of Analyzers in Wild Mammals (Nauka, 1971) [in Russian].

    Google Scholar 

  2. B. Atanasova, J. Graux, W. El Hage, et al., Neurosci. Biobehav. Rev. 32 (7), 1315 (2008).

    Article  Google Scholar 

  3. B. I. Turetsky and P. J. Moberg, Am. J. Psychiatry 166 (2), 226 (2009).

    Article  Google Scholar 

  4. R. S. Herz and T. Engen, Psychon. Bull. Rev. 3 (3), 300 (1996).

    Article  Google Scholar 

  5. L. Sela and N. Sobel, Exp. Brain Res. 205 (1), 13 (2010).

    Article  Google Scholar 

  6. P. E. Gilbert, E. Pirogovsky, A. M. Brushfield, et al., Ann. N. Y. Acad. Sci. 1170 (1), 718 (2009).

    Article  ADS  Google Scholar 

  7. T. Acker and H. Acker, J. Exp. Biol. 207 (18), 3171 (2004).

    Article  Google Scholar 

  8. C. Peers, H. A. Pearson, and J. P. Boyle, Essays Biochem. 43, 153 (2007).

    Article  Google Scholar 

  9. G. J. Chen, J. Xu, S. A. Lahousse, et al., J. Alzheimer’s Dis. 5 (3), 209 (2003).

    Article  Google Scholar 

  10. P. Grammas, D. Tripathy, A. Sanchez, et al., Int. J. Clin. Exp. Pathol. 4 (6), 616 (2011).

    Google Scholar 

  11. O. Alaoui-Ismaili, E. Vernet-Maury, A. Dittmar, et al., Chem. Senses 22 (3), 237 (1997).

    Article  Google Scholar 

  12. P. M. Vernetti, M. Rossi, D. Cerquetti, et al., Chem. Senses 41 (1), 77 (2015).

    Article  Google Scholar 

  13. F. R. Schab, Psychol. Bull. 109 (2), 242 (1991).

    Article  Google Scholar 

  14. R. L. Doty, P. Shaman, and M. Dann, Physiol. Behav. 32 (3), 489 (1984).

    Article  Google Scholar 

  15. W. Ormel, C. De Graaf, F. Rousseau, et al., Rhinology 41, 141 (2003).

    Google Scholar 

  16. K. P. Ivanov and Yu. Ya. Kislyakov, Brain Energy Requirements and Oxygen Supply: Experimental and Mathematical Study (Nauka, Leningrad, 1979) [in Russian].

    Google Scholar 

  17. S. C. Hand and I. Hardewig, Annu. Rev. Physiol. 58 (1), 539 (1996).

    Article  Google Scholar 

  18. P. H. Donohoe, T. G. West, and R. G. Boutilier, J. Exp. Biol. 203 (2), 405 (2000).

    Google Scholar 

  19. J. W. Lazarewicz, Acta Neurobiol. Exp. 56, 299 (1996).

    Google Scholar 

  20. O. B. Paulson, S. G. Hasselbalch, E. Rostrup, et al., J. Cereb. Blood Flow Metab. 30 (1), 2 (2010).

    Article  Google Scholar 

  21. D. Lyons, Doctoral Dissertation (Université Pierre et Marie Curie-Paris V, 2015).

  22. M. Sharan, E. P. Vovenko, A. Vadapalli, et al., J. Cereb. Blood Flow Metab. 28 (9), 1597 (2008).

    Article  Google Scholar 

  23. E. V. Bigdaj, E. A. Bezgacheva, V. O. Samojlov, and Y. N. Korolyev, Biophysics (Moscow) 63 (3), 463 (2018).

    Article  Google Scholar 

  24. J. A. Ship, J. D. Pearson, L. J. Cruise, et al., J. Gerontol. 51 (2), 86 (1996).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was financially supported by the Program of State Academies of Science for Basic Research in 2014–2020 (GP-14, Section 63).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Bigdaj.

Additional information

Translated by D. Novikova

Abbreviations: UPSIT, University of Pennsylvania Smell Identification Test (a standard olfactory test system developed in the United States).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bigdaj, E.V., Bezgacheva, E.A., Samojlov, V.O. et al. The Influence of Hypoxic Hypoxia on the Human Ability to Identify Smells. BIOPHYSICS 63, 814–819 (2018). https://doi.org/10.1134/S0006350918050044

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350918050044

Navigation