Skip to main content
Log in

Verification of the PREFAB alignment database

  • Molecular Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Verification of the PREFAB database containing golden standard protein alignments was performed. It has revealed a significant number of differences between the sequences from PREFAB and PDB databases. It was shown that, compared with the sequences given in the PDB, 575 alignments referred to a sequence with a gap; such alignments were excluded. Furthermore, compared with the PDB sequences, single substitutions or insertions were found for 440 amino acid sequences from PREFAB; these sequences were edited. SCOP domain analysis has shown that only 502 alignments in the resulting set contain sequences from the same family. Finally, eliminating duplicates, we have created a new golden standard alignment database PREFAB-P based on PREFAB; the PREFAB-P database contains 581 alignments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. F. Smith and T. F. Smith, Protein Eng. 5, 35 (1992).

    Article  Google Scholar 

  2. E. Deperieux, G. Baudoux, P. Briffeuil, et al., Comput. Appl. BioSci. 13, 249 (1997).

    Google Scholar 

  3. S. R. Eddy, ISMB 3, 114 (1995).

    Google Scholar 

  4. B. Morgenstern, A. Dress, and T. Werner, Proc. Natl. Acad. Sci. USA 93, 12098 (1996).

    Article  ADS  MATH  Google Scholar 

  5. J. D. Thompson, T. J. Gibson, F. Plewniak, et al., Nucl. Acids Res. 24, 4876 (1997).

    Article  Google Scholar 

  6. M. A. McClure, Vasi T. K., Fitch W. M., Mol. Biol. Evol. 11, 571 (1994).

    Google Scholar 

  7. M. R. Aniba, O. Poch, and J. D. Thompson, Nucl. Acids Res. 38, 7353 (2010).

    Article  Google Scholar 

  8. R. C. Edgar, Nucl. Acids Res. 38, 2145 (2010).

    Article  Google Scholar 

  9. R. C. Edgar, Nucl. Acids Res. 32, 1792 (2004).

    Article  Google Scholar 

  10. A. G. Murzin, S. E. Brenner, T. Hubbard, and C. Chothia, J. Mol. Biol. 247, 536 (1995).

    Google Scholar 

  11. H. Hasegawa and L. Holm, Curr. Opin. Struct. Biol. 19, 341 (2009).

    Article  Google Scholar 

  12. A. Godzik, Protein Sci. 5, 1325 (1996).

    Article  Google Scholar 

  13. C. Etchebest, C. Benros, S. Hazout, and A. G. de Brevern, Proteins 59, 810 (2005).

    Article  Google Scholar 

  14. C. Orengo, A. Michie, S. Jones, et al., Structure 5, 1093 (1997).

    Google Scholar 

  15. A. S. Siddiqui and G. J. Barton, Protein Sci. 42, 372 (1995).

    Google Scholar 

  16. M. B. Swindells, Protein Sci. 4, 103 (1995).

    Article  Google Scholar 

  17. L. Holm and C. Sander, Proteins 19, 256 (1994).

    Article  Google Scholar 

  18. A. Harrison, F. Pearl, R. Mott, et al., J. Mol. Biol. 5(323), 909 (2002).

    Article  Google Scholar 

  19. F. M. Pearl, C. F. Bennett, J. E. Bray, et al., Nucl. Acids Res. 31, 452 (2003).

    Article  Google Scholar 

  20. J. D. Thompson, F. Plewniak, and O. Poch, Bioinformatics 15, 87 (1999).

    Article  Google Scholar 

  21. A. Bahr, J. D. Thompson, J. C. Thierry, and O. Poch, Nucl. Acids Res. 29, 323 (2001).

    Article  Google Scholar 

  22. J. D. Thompson, P. Koehl, R. Ripp, and O. Poch, Proteins 61, 127 (2005).

    Article  Google Scholar 

  23. E. Perrodou, C. Chica, O. Poch, et al., BMC Bioinformatics 9, 213 (2008).

    Article  Google Scholar 

  24. K. Mizuguchi, C. M. Deane, T. L. Blundell, and J. P. Overington, Protein Sci. 7, 2469 (1998).

    Article  Google Scholar 

  25. G. P. Raghava, S. M. Searle, P. C. Audley, et al., BMC Bioinformatics 4, 47 (2003).

    Article  Google Scholar 

  26. I. Van Walle, I. Lasters, and L. Wyns, Bioinformatics 21, 1267 (2005).

    Article  Google Scholar 

  27. H. M. Berman, K. Henrick, and H. Nakamura, Nat. Struct. Biol. 10, 980 (2003).

    Article  Google Scholar 

  28. R. D. Finn, J. Mistry, J. Tate, et al., Nucl. Acids Res. 38, 211 (2010).

    Article  Google Scholar 

  29. N. S. Boutonnet, M. J. Rooman, M. E. Ochagavia, et al., Protein Eng. 8, 647 (1995).

    Article  Google Scholar 

  30. I. N. Shindyalov and P. E. Bourne, Protein Eng. 11, 739 (1998).

    Article  Google Scholar 

  31. PREFAB v. 4.0: http://www.drive5.com/muscle/pre-fab.htm

  32. R. Sadreyev and N. Grishin, J. Mol. Biol. 326, 317 (2003).

    Article  Google Scholar 

  33. R. C. Edgar and K. A. Sjolander, Bioinformatics, DOI: 10.1093/bioinformatics/bth090 (2004).

  34. R. C. Edgar and K. Sjolander, Bioinformatics, DOI: 10.1093/bioinformatics/bth091 (2004).

  35. L. Holm and C. Sander, Nucl. Acids Res. 26, 316 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Astakhova.

Additional information

Original Russian Text © T.V. Astakhova, M.N. Lobanov, I.V. Poverennaya, M.A. Roytberg, V.V. Yacovlev, 2012, published in Biofizika, 2012, Vol. 57, No. 2, pp. 205–211.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Astakhova, T.V., Lobanov, M.N., Poverennaya, I.V. et al. Verification of the PREFAB alignment database. BIOPHYSICS 57, 133–137 (2012). https://doi.org/10.1134/S0006350912020030

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350912020030

Keywords

Navigation