Skip to main content
Log in

Generation of reactive oxygen species in water under exposure to visible or infrared irradiation at absorption bands of molecular oxygen

  • Molecular Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

It is found that in bidistilled water saturated with oxygen, hydrogen peroxide and hydroxyl radicals are formed under the influence of visible and infrared radiation in the absorption bands of molecular oxygen. Formation of reactive oxygen species (ROS) occurs under the influence of both solar and artificial light sources, including the coherent laser irradiation. The oxygen effect, i.e. the impact of dissolved oxygen concentration on production of hydrogen peroxide induced by light, is detected. It is shown that the visible and infrared radiation in the absorption bands of molecular oxygen leads to the formation of 8-oxoguanine in DNA in vitro. Physicochemical mechanisms of ROS formation in water when exposed to visible and infrared light are studied, and the involvement of singlet oxygen and superoxide anion radicals in this process is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. P. Rassadkin, Water Ordinary and Extraordinary (Galereya STO, Moscow, 2008) [in Russian].

    Google Scholar 

  2. M. Kasha and D. E. Brabham, Singlet Oxygen, Ed. by H.H. Wasserman and R.W. Murray (Academic Press, N.Y., 1979).

    Google Scholar 

  3. B. W. Henderson and T. J. Dougherty, Photochem. Photobiol. 55, 145 (1992).

    Article  Google Scholar 

  4. D. F. Evans, J. Chem. Soc. D, 367 (1969).

  5. J. B. S. Matheson, J. Lee, B. S. Yamanashi, et al., Chem. Phys. Lett. 27, 355 (1974).

    ADS  Google Scholar 

  6. A. A. Krasnovsky, Jr., N. N. Drozdova, A. V. Ivanov, et al., Biokhimiya 68, 963 (2003).

    Article  Google Scholar 

  7. S. D. Zakharov and A. V. Ivanov, Biophysics 50(Suppl. 1), 64 (2005).

    Google Scholar 

  8. S. D. Zakharov, B. V. Eremeev, and S. N. Perov, Sov. Phys.-Lebedev Inst. Rep. 1, 19 (1989).

    Google Scholar 

  9. B. F. Minaev, Uspekhi Khimii 76, 1059 (2007).

    Google Scholar 

  10. J. F. Ward, Prog. Nucl. Acid Res. Mol. Biol. 35, 95 (1988).

    Article  Google Scholar 

  11. V. I. Bruskov, L. V. Malakhova, Z. K. Masalimov, et al., Nucl. Acids Res. 30, 1354 (2002).

    Article  Google Scholar 

  12. O. Yu. Gudkova, S. V. Gudkov, A. B. Gapeev, et al., Biofizika 50, 773 (2005).

    Google Scholar 

  13. A. I. Miroshnikov, S. V. Gudkov, and V. I. Bruskov, Voda. Khimiya i Ekologiya, 31 (2008).

  14. N. K. Zenkov, V. Z. Lankin, and E. B. Men’shchikova, Oxidative Stress: Biochemical and Pahtophysiological Aspects (MAIK Nauka/Interperiodica, Moscow, 2001) [in Russian].

    Google Scholar 

  15. M. L. Circu and T.Y. Aw, Free Radic. Biol. Med. 48, 749 (2010).

    Article  Google Scholar 

  16. A. V. Peskin, Y. A. Labas, and A. N. Tikhonov, FEBS Lett. 434, 201 (1998).

    Article  Google Scholar 

  17. N. I. Gol’dshtein, Biokhimiya 67, 194 (2002).

    MathSciNet  Google Scholar 

  18. I. P. Neumyvakin, Hydrogen Peroxide (On Guard of Health) (DILYa, Moscow, 2007) [in Russian].

    Google Scholar 

  19. V. I. Bruskov, S. V. Gudkov, S. F. Chalkin, et al., Dokl. RAN 425, 827 (2009).

    Google Scholar 

  20. S. V. Gudkov, V. I. Bruskov, M. E. Astashev, et al., J. Phys. Chem. B. 115, 7693 (2011).

    Article  Google Scholar 

  21. I. N. Shtarkman, S. V. Gudkov, A. V. Chernikov, and V. I. Bruskov, Biofizika 53, 5 (2008).

    Google Scholar 

  22. S. V. Gudkov, O. Yu. Gudkova, I. N. Shtarkman, et al., Radiats. Biol. Radioekol. 46, 713 (2006).

    Google Scholar 

  23. S. V. Gudkov, S. A. Garmash, O. E. Karp, et al., Biofizika 55, 588 (2010).

    Google Scholar 

  24. S. V. Gudkov, S. A. Garmash, I. N. Shtarkman, et al., Dokl. RAN 430, 123 (2010).

    Google Scholar 

  25. I. N. Shtarkman, S. V. Gudkov, A. V. Chernikov, and V. I. Bruskov, Biokhimiya 73, 576 (2008).

    Google Scholar 

  26. V. I. Bruskov A. V. Chernikov, S. V. Gudkov, and Zh. K. Masalimov, Biofizika 48, 1022 (2003).

    Google Scholar 

  27. V. S. Smirnova, S. V. Gudkov, I. N. Shtarkman, et al., Biofizika 50, 456 (2005).

    Google Scholar 

  28. G. V. Andrievsky, V. I. Bruskov, A. A. Tykhomyrov, et al., Free Radic. Biol. Med. 47, 786 (2009).

    Article  Google Scholar 

  29. V. I. Bruskov, A. I. Gaziev, L. V. Malakhova, et al., Biokhimiya 61, 535 (1996).

    Google Scholar 

  30. S. V. Gudkov, I. N. Shtarkman, A. V. Chernikov, et al., Dokl. RAN 413, 264 (2007).

    Google Scholar 

  31. S. V. Gudkov, I. N. Shtarkman, V. S. Smirnova, et al., Radiat. Res. 165, 538 (2006).

    Article  Google Scholar 

  32. S. V. Gudkov, V. S. Smirnova, and V. I. Bruskov, Voda. Khimiya i Ekologiya, 40 (2010).

  33. Yu. B. Kudryashov, Radiation Biophysics (Fizmatlt, Moscow, 2004) [in Russian].

    Google Scholar 

  34. L. I. Grossweiner, E. F. Zwicker, and G. W. Swenson, Science 141, 1180 (1963).

    Article  ADS  Google Scholar 

  35. G. V. Fomin, L. A. Blyumenfel’d, and B. I. Sukhorukov, Dokl. AN SSSR 157, 1199 (1964).

    Google Scholar 

  36. A. I. Kloss, Dokl. AN SSSR 303, 1403 (1988).

    Google Scholar 

  37. V. I. Bruskov, Zh. K. Masalimov, and A. V. Chernikov, Dokl. RAN 384, 821 (2002).

    Google Scholar 

  38. M. Shirom and G. Stein, J. Chem. Phys. 55, 3372 (1971).

    Article  ADS  Google Scholar 

  39. A. V. Chernikov and V. I. Bruskov, Biofizika 47, 773 (2002).

    Google Scholar 

  40. N. F. Bondarenko and E. Z. Gak, Electromagnetic Phenomena in Natural Waters (Gidrometeoizdat, Leningrad, 1984) [in Russian].

    Google Scholar 

  41. N. F. Bunkin; N. V. Suyazov, A. V. Shkirin, et al., J. Exp. Theor. Phys. 108, 800 (2009).

    Article  ADS  Google Scholar 

  42. N. F. Bunkin, B. W. Ninham, P. S. Ignatiev, et al., J. Biophotonics 4, 150 (2011).

    Article  Google Scholar 

  43. Y. T. Didenko and K. S. Suslick, Nature 418, 394 (2002).

    Article  ADS  Google Scholar 

  44. T. Finkel and N. J. Holbrook, Nature 408, 239 (2000).

    Article  ADS  Google Scholar 

  45. A. Hartmann, E. Agurell, C. Beevers, et al., Mutagenesis 18, 45 (2003).

    Article  Google Scholar 

  46. V. Voeikov, Rivista Biol. 94, 237 (2001).

    Google Scholar 

  47. V. V. Tuchin, Lasers and Fiber Optics in Biomedical Research (FizMatLit, Moscow, 2010) [in Russian].

    Google Scholar 

  48. V. I. Illarionov, Theory and Practice of Laser Therapy. Educational Manual (URSS, Moscow, 2010) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.V. Gudkov, O.E. Karp, S.A. Garmash, V.E. Ivanov, A.V. Chernikov, A.A. Manokhin, M.E. Astashev, L.S. Yaguzhinsky, V.I. Bruskov, 2012, published in Biofizika, 2012, Vol. 57, No. 1, pp. 5–13.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gudkov, S.V., Karp, O.E., Garmash, S.A. et al. Generation of reactive oxygen species in water under exposure to visible or infrared irradiation at absorption bands of molecular oxygen. BIOPHYSICS 57, 1–8 (2012). https://doi.org/10.1134/S0006350912010113

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350912010113

Keywords

Navigation