The Mechanisms of L-Arginine Metabolism Disorder in Endothelial Cells

Abstract

L-arginine is a key metabolite for nitric oxide production by endothelial cells, as well as signaling molecule of the mTOR signaling pathway. mTOR supports endothelial cells homeostasis and regulates activity of L-arginine-metabolizing enzymes, endothelial nitric oxide synthase, and arginase II. Disruption of the L-arginine metabolism in endothelial cells leads to the development of endothelial dysfunction. Conflicting results of the use of L-arginine supplement to improve endothelial function reveals a controversial role of the amino acid in the endothelial cell biology. The review is aimed at analysis of the current data on the role of L-arginine metabolism in the development of endothelial dysfunction.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.

Abbreviations

ADMA:

asymmetric dimethyl arginine

BH4 :

tetrahydrobiopterin

CaM:

calmodulin

EC:

endothelial cells

eNOS:

endothelial nitric oxide synthase

Hsp90:

heat shock protein 90

HUVEC:

human umbilical vein endothelial cells

mTOR:

mechanical target of rapamycin

NADP:

nicotinamide adenine dinucleotide phosphate

NO:

nitric oxide

ROS:

reactive oxygen species

References

  1. 1

    Freed, J. K., and Gutterman, D. D. (2017) Communication is key: mechanisms of intercellular signaling in vasodilation, J. Cardiovasc. Pharmacol., 69, 264-272, https://doi.org/10.1097/FJC.0000000000000463.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2

    Tousoulis, D., Kampoli, A. M., Tentolouris, C., Papageorgiou, N., and Stefanadis, C. (2012) The role of nitric oxide on endothelial function, Curr. Vasc. Pharmacol., 10, 4-18.

    CAS  Article  Google Scholar 

  3. 3

    Huang, P. L., Huang, Z., Mashimo, H., Bloch, K. D., Moskowitz, M. A., et al. (1995) Hypertension in mice lacking the gene for endothelial nitric oxide synthase, Nature, 377, 239-242, https://doi.org/10.1038/377239a0.

    CAS  Article  PubMed  Google Scholar 

  4. 4

    Moroi, M., Zhang, L., Yasuda, T., Virmani, R., Gold, H. K., Fishman, M. C., and Huang, P. L. (1998) Interaction of genetic deficiency of endothelial nitric oxide, gender, and pregnancy in vascular response to injury in mice, J. Clin. Invest., 101, 1225-1232, https://doi.org/10.1172/JCI1293.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5

    Lefer, D. J., Jones, S. P., Girod, W. G., Baines, A., Grisham, M. B., et al. (1999) Leukocyte-endothelial cell interactions in nitric oxide synthase-deficient mice, Am. J. Physiol., 276, H1943-H1950, https://doi.org/10.1152/ajpheart.1999.276.6.H1943.

    CAS  Article  PubMed  Google Scholar 

  6. 6

    Freedman, J. E., Sauter, R., Battinelli, E. M., Ault, K., Knowles, C., Huang, P. L., and Loscalzo, J. (1999) Deficient platelet-derived nitric oxide and enhanced hemostasis in mice lacking the NOSIII gene, Circ. Res., 84, 1416-1421, https://doi.org/10.1161/01.res.84.12.1416.

    CAS  Article  PubMed  Google Scholar 

  7. 7

    Kuhlencordt, P. J., Gyurko, R., Han, F., Scherrer-Crosbie, M., Aretz, T. H., et al. (2001) Accelerated atherosclerosis, aortic aneurysm formation, and ischemic heart disease in apolipoprotein E/endothelial nitric oxide synthase double-knockout mice, Circulation, 104, 448-454, https://doi.org/10.1161/hc2901.091399.

    CAS  Article  PubMed  Google Scholar 

  8. 8

    Ha, J. M., Jin, S. Y., Lee, H. S., Shin, H. K., Lee, D. H., et al. (2016) Regulation of retinal angiogenesis by endothelial nitric oxide synthase signaling pathway, Kor. J. Physiol. Pharmacol. Official J. Kor. Physiol. Soc. Kor. Pharmacol., 20, 533-538, https://doi.org/10.4196/kjpp.2016.20.5.533.

    CAS  Article  Google Scholar 

  9. 9

    Zani, B. G., and Bohlen, H. G. (2005) Transport of extracellular l-arginine via cationic amino acid transporter is required during in vivo endothelial nitric oxide production, Am. J. Physiol. Heart. Circ. Physiol., 289, H1381-H1390.

    CAS  Article  Google Scholar 

  10. 10

    MacKenzie, A., and Wadsworth, R. M. (2003) Extracellular L-arginine is required for optimal NO synthesis by eNOS and iNOS in the rat mesenteric artery wall, Br. J. Pharmacol., 139, 1487-1497, https://doi.org/10.1038/sj.bjp.0705380.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11

    Oludare, G. O., Jinadu, H. D., and Aro, O. O. (2018) L-arginine attenuates blood pressure and reverses the suppression of angiogenic risk factors in a rat model of preeclampsia, Pathophysiology, 25, 389-395, https://doi.org/10.1016/j.pathophys.2018.08.001.

    CAS  Article  PubMed  Google Scholar 

  12. 12

    Mariotti, F. (2020) Arginine supplementation and cardiometabolic risk, Curr. Opin. Clin. Nutr. Metab. Care, 23, 29-34, https://doi.org/10.1097/MCO.0000000000000612.

    CAS  Article  PubMed  Google Scholar 

  13. 13

    Moretto, J., Guglielmetti, A. S., Tournier-Nappey, M., Martin, H., Prigent-Tessier, A., Marie, C., and Demougeot, C. (2017) Effects of a chronic l-arginine supplementation on the arginase pathway in aged rats, Exp. Gerontol., 90, 52-60, https://doi.org/10.1016/j.exger.2017.01.023.

    CAS  Article  PubMed  Google Scholar 

  14. 14

    Kabat, A., and Dhein, S. (2006) L-arginine supplementation prevents the development of endothelial dysfunction in hyperglycaemia, Pharmacology, 76, 185-191.

    CAS  Article  Google Scholar 

  15. 15

    Rodrigues-Krause, J., Krause, M., Rocha, I., Umpierre, D., and Fayh, A. (2018) Association of L-arginine supplementation with markers of endothelial function in patients with cardiovascular or metabolic disorders: a systematic review and meta-analysis, Nutrients, 11, 15, https://doi.org/10.3390/nu11010015.

    CAS  Article  PubMed Central  Google Scholar 

  16. 16

    Xiong, Y., Fru, M. F., Yu, Y., Montani, J. P., Ming, X. F., and Yang, Z. (2014) Long term exposure to L-arginine accelerates endothelial cell senescence through arginase-II and S6K1 signaling, Aging (Albany NY), 6, 369-379, https://doi.org/10.18632/aging.100663.

    CAS  Article  Google Scholar 

  17. 17

    Morris, S. M., Jr. (2016) Arginine metabolism revisited, J. Nutr., 146, 2579S-2586S, https://doi.org/10.3945/jn.115.226621.

    CAS  Article  PubMed  Google Scholar 

  18. 18

    Saxton, R. A., and Sabatini, D. M. (2017) mTOR signaling in growth, metabolism, and disease, Cell, 168, 960-976, https://doi.org/10.1016/j.cell.2017.02.004.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19

    Decker, B., and Pumiglia, K. (2018) mTORc1 activity is necessary and sufficient for phosphorylation of eNOSS1177, Physiol. Rep., 6, e13733, https://doi.org/10.14814/phy2.13733.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20

    Yu, Y., Xiong, Y., Montani, J. P., Yang, Z., and Ming, X. F. (2018) Arginase-II activates mTORC1 through myosin-1b in vascular cell senescence and apoptosis, Cell Death Dis., 9, 313, https://doi.org/10.1038/s41419-018-0356-9.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21

    Rafikov, R., Fonseca, F. V., Kumar, S., Pardo, D., Darragh, C., Elms, S., and Black, S. M. (2011) eNOS activation and NO function: structural motifs responsible for the posttranslational control of endothelial nitric oxide synthase activity, J. Endocrinol., 210, 271-284, https://doi.org/10.1530/JOE-11-0083.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22

    Govers, R., and Rabelink, T. J. (2001) Cellular regulation of endothelial nitric oxide synthase, Am. J. Physiol. Renal. Physiol., 280, F193-F206.

    CAS  Article  Google Scholar 

  23. 23

    Murthy, S., Koval, O. M., Ramiro Diaz, J. M., Kumar, S., Nuno, D., et al. (2017) Endothelial CaMKII as a regulator of eNOS activity and NO-mediated vasoreactivity, PLoS One, 12, e0186311, https://doi.org/10.1371/journal.pone.0186311.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24

    Lee, M. Y., Gamez-Mendez, A., Zhang, J., Zhuang, Z., Vinyard, D. J., et al. (2018) Endothelial cell autonomous role of Akt1: regulation of vascular Tone and ischemia-induced arteriogenesis, Arterioscler. Thromb. Vasc. Biol., 38, 870-879, https://doi.org/10.1161/ATVBAHA.118.310748.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25

    Cacicedo, J. M., Gauthier, M. S., Lebrasseur, N. K., Jasuja, R., Ruderman, N. B., and Ido, Y. (2011) Acute exercise activates AMPK and eNOS in the mouse aorta, Am. J. Physiol. Heart Circ. Physiol., 301, H1255-H1265, https://doi.org/10.1152/ajpheart.01279.2010.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26

    Vanhoutte, P. M., Zhao, Y., Xu, A., and Leung, S. W. S. (2016) Thirty years of saying NO: sources, fate, actions, and misfortunes of the endothelium-derived vasodilator mediator, Circ. Res. Am. Heart Assoc., 119, 375-396, https://doi.org/10.1161/CIRCRESAHA.116.306531.

    CAS  Article  Google Scholar 

  27. 27

    Ghimire, K., Altmann, H. M., Straub, A. C., and Isenberg, J. S. (2017) Nitric oxide: what’s new to NO? Am. J. Physiol., 312, C254-C262, https://doi.org/10.1152/ajpcell.00315.2016.

    Article  Google Scholar 

  28. 28

    Bibli, S. I., Zhou, Z., Zukunft, S., Fisslthaler, B., Andreadou, I., et al. (2017) Tyrosine phosphorylation of eNOS regulates myocardial survival after an ischaemic insult: role of PYK2, Cardiovasc. Res., 113, 926-937, https://doi.org/10.1093/cvr/cvx058.

    CAS  Article  PubMed  Google Scholar 

  29. 29

    Förstermann, U., and Sessa, W. C. (2012) Nitric oxide synthases: regulation and function, Eur. Heart J., 33, 829-837, https://doi.org/10.1093/eurheartj/ehr304.

    CAS  Article  PubMed  Google Scholar 

  30. 30

    Sugimoto, M., Nakayama, M., Goto, T. M., Amano, M., Komori, K., and Kaibuchi, K. (2007) Rho-kinase phosphorylates eNOS at threonine 495 in endothelial cells, Biochem. Biophys. Res. Commun., 361, 462-467, https://doi.org/10.1016/j.bbrc.2007.07.030.

    CAS  Article  PubMed  Google Scholar 

  31. 31

    Chen, Z. P., Mitchelhill, K. I., Michell, B. J., Stapleton, D., Rodriguez-Crespo, I., et al. (1999) AMP-activated protein kinase phosphorylation of endothelial NO synthase, FEBS Lett., 443, 285-289.

    CAS  Article  Google Scholar 

  32. 32

    Greif, D. M., Sacks, D. B., and Michel, T. (2004) Calmodulin phosphorylation and modulation of endothelial nitric oxide synthase catalysis, Proc. Natl. Acad. Sci. USA, 101, 1165-1170, https://doi.org/10.1073/pnas.0306377101.

    CAS  Article  PubMed  Google Scholar 

  33. 33

    Oliveira-Paula, G. H., Lacchini, R., and Tanus-Santos, J. E. (2016) Endothelial nitric oxide synthase: From biochemistry and gene structure to clinical implications of NOS3 polymorphisms, Gene, 575 (2 Pt 3), 584-599, https://doi.org/10.1016/j.gene.2015.09.061.

    CAS  Article  Google Scholar 

  34. 34

    Gebhart, V., Reiß, K., Kollau, A., Mayer, B., and Gorren, A. (2019) Site and mechanism of uncoupling of nitric-oxide synthase: Uncoupling by monomerization and other misconceptions, Nitric Oxide, 89, 14-21, https://doi.org/10.1016/j.niox.2019.04.007.

    CAS  Article  PubMed  Google Scholar 

  35. 35

    Luo, S., Lei, H., Qin, H., and Xia, Y. (2014) Molecular mechanisms of endothelial NO synthase uncoupling, Curr. Pharm. Des., 20, 3548-3553, https://doi.org/10.2174/13816128113196660746.

    CAS  Article  PubMed  Google Scholar 

  36. 36

    Li, H., and Förstermann, U. (2017) Nitric Oxide (Third Edition), Biology and Pathobiology, 117-124, https://doi.org/10.1016/B978-0-12-804273-1.00009-0.

  37. 37

    Sharma, J. N., Al-Omran, A., and Parvathy, S. S. (2007) Role of nitric oxide in inflammatory diseases, Inflammopharmacology, 15, 252-259, https://doi.org/10.1007/s10787-007-0013-x.

    CAS  Article  PubMed  Google Scholar 

  38. 38

    Liang, P., Jiang, B., Li, Y., Liu, Z., Zhang, P., et al. (2018) Autophagy promotes angiogenesis via AMPK/Akt/mTOR signaling during the recovery of heat-denatured endothelial cells, Cell Death Dis., 9, 1152, https://doi.org/10.1038/s41419-018-1194-5.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39

    Vanhoutte, P. M. (2018) Nitric oxide: from good to bad, Ann. Vasc. Dis., 11, 41-51, https://doi.org/10.3400/avd.ra.17-00134.

    Article  PubMed  PubMed Central  Google Scholar 

  40. 40

    Park, I. S., Kang, S. W., Shin, Y. J., Chae, K. Y., Park, M. O., et al. (2003) Arginine deiminase: a potential inhibitor of angiogenesis and tumour growth, Br. J. Cancer, 89, 907-914, https://doi.org/10.1038/sj.bjc.6601181.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41

    Chen, F., Lucas, R., and Fulton, D. (2013) The subcellular compartmentalization of arginine metabolizing enzymes and their role in endothelial dysfunction, Front. Immunol., 4, 184, https://doi.org/10.3389/fimmu.2013.00184.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. 42

    Loscalzo, J. (2001) An experiment of nature: genetic L-arginine deficiency and NO insufficiency, J. Clin. Invest., 108, 663-664, https://doi.org/10.1172/JCI13848.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43

    Morris, C. R., Kato, G. J., Poljakovic, M., Wang, X., Blackwelder, W. C., et al. (2005) Dysregulated arginine metabolism, hemolysis-associated pulmonary hypertension, and mortality in sickle cell disease, JAMA, 294, 81-90, https://doi.org/10.1001/jama.294.1.81.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44

    Luiking, Y. C., and Deutz, N. E. (2007) Exogenous arginine in sepsis, Crit. Care. Med., 35, 557-563, https://doi.org/10.1097/01.CCM.0000279191.44730.A2.

    CAS  Article  Google Scholar 

  45. 45

    Pribis, J. P., Zhu, X., Vodovotz, Y., and Ochoa, J. B. (2012) Systemic arginine depletion after a murine model of surgery or trauma, JPEN J. Parenter. Enteral. Nutr., 36, 53-59, https://doi.org/10.1177/0148607111414579.

    CAS  Article  PubMed  Google Scholar 

  46. 46

    Kao, C., Wedes, S., Hsu, J., Bohren, K., Comhair, S., Jahoor, F., and Erzurum, S. (2015) Arginine metabolic endotypes in pulmonary arterial hypertension, Pulmonary Circ., 5, 124-134, https://doi.org/10.1086/679720.

    CAS  Article  Google Scholar 

  47. 47

    Kan, M. J., Lee, J. E., Wilson, J. G., Everhart, A. L., Brown, C. M., et al. (2015) Arginine deprivation and immune suppression in a mouse model of Alzheimer’s disease, J. Neurosci., 35, 5969-5982, https://doi.org/10.1523/JNEUROSCI.4668-14.2015.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. 48

    Morris, S. M., Jr. (2012) Arginases and arginine deficiency syndromes, Curr. Opin. Clin. Nutr. Metab. Care, 15, 64-70, https://doi.org/10.1097/MCO.0b013e32834d1a08.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. 49

    Di Franco, M., Lucchino, B., Conti, F., Valesini, G., and Spinelli, F. R. (2018) Asymmetric dimethyl arginine as a biomarker of atherosclerosis in rheumatoid arthritis, Mediat. Inflamm., 2018, 3897295, https://doi.org/10.1155/2018/3897295.

    CAS  Article  Google Scholar 

  50. 50

    Jung, C. H., Lee, W. J., Hwang, J. Y., Lee, M. J., Seol, S. M., et al. (2012) Vaspin increases nitric oxide bioavailability through the reduction of asymmetric dimethylarginine in vascular endothelial cells, PLoS One, 7, e52346, https://doi.org/10.1371/journal.pone.0052346.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. 51

    Watson, C. P., Pazarentzos, E., Fidanboylu, M., Padilla, B., Brown, R., and Thomas, S. A. (2016) The transporter and permeability interactions of asymmetric dimethylarginine (ADMA) and L-arginine with the human blood-brain barrier in vitro, Brain Res., 1648 (Pt A), 232-242, https://doi.org/10.1016/j.brainres.2016.07.026.

    CAS  Article  Google Scholar 

  52. 52

    Yokoro, M., Minami, M., Okada, S., Yano, M., Otaki, N., Ikeda, H., and Fukuo, K. (2018) Urinary sodium-to-potassium ratio and serum asymmetric dimethylarginine levels in patients with type 2 diabetes, Hypertens. Res., 41, 913-922, https://doi.org/10.1038/s41440-018-0098-1.

    CAS  Article  PubMed  Google Scholar 

  53. 53

    Gać, P., Poręba, M., Jurdziak, M., Trzmielewska, E., Gocławska, K., et al. (2020) Cardiovascular risk factors and the concentration of asymmetric dimethylarginine, Adv. Clin. Exp. Med., 29, 63-70, https://doi.org/10.17219/acem/111808.

    Article  PubMed  Google Scholar 

  54. 54

    Hou, L., Guo, J., Xu, F., Weng, X., Yue, W., and Ge, J. (2018) Cardiomyocyte dimethylarginine dimethylaminohydrolase1 attenuates left-ventricular remodeling after acute myocardial infarction: involvement in oxidative stress and apoptosis, Basic Res. Cardiol., 113, 28, https://doi.org/10.1007/s00395-018-0685-y.

    CAS  Article  PubMed  Google Scholar 

  55. 55

    Fulton, M. D., Brown, T., and Zheng, Y. G. (2019) The biological axis of protein arginine methylation and asymmetric dimethylarginine, Int. J. Mol. Sci., 20, 3322, https://doi.org/10.3390/ijms20133322.

    CAS  Article  PubMed Central  Google Scholar 

  56. 56

    Wielkoszyński, T., Zalejska-Fiolka, J., Strzelczyk, J. K., Owczarek, A. J., Cholewka, A., Furmański, M., and Stanek, A (2018) Oxysterols increase inflammation, lipid marker levels and reflect accelerated endothelial dysfunction in experimental animals, Mediators Inflamm., 2018, 2784701, https://doi.org/10.1155/2018/2784701.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. 57

    Knipp, M., Braun, O., Gehrig, P. M., Sack, R., and Vasák, M. (2003) Zn(II)-free dimethylargininase-1 (DDAH-1) is inhibited upon specific Cys-S-nitrosylation, J. Biol. Chem., 278, 3410-3416.

    CAS  Article  Google Scholar 

  58. 58

    Bollenbach, A., and Tsikas, D. (2019) Pharmacological activation of dimethylarginine dimethylaminohydrolase (DDAH) activity by inorganic nitrate and DDAH inhibition by NG-hydroxy-L-arginine, Nω,Nω-dimethyl-L-citrulline and Nω,Nω-dimethyl-Nδ-hydroxy-L-citrulline: results and overview, Amino Acids, 51, 483-494, https://doi.org/10.1007/s00726-018-2684-6.

    CAS  Article  PubMed  Google Scholar 

  59. 59

    Morita, M., Hayashi, T., Ochiai, M., Maeda, M., Yamaguchi, T., Ina, K., and Kuzuya, M. (2014) Oral supplementation with a combination of L-citrulline and L-arginine rapidly increases plasma L-arginine concentration and enhances NO bioavailability, Biochem. Biophys. Res. Commun., 454, 53-57, https://doi.org/10.1016/j.bbrc.2014.10.029.

    CAS  Article  PubMed  Google Scholar 

  60. 60

    Elms, S., Chen, F., Wang, Y., Qian, J., Askari, B., et al. (2013) Insights into the arginine paradox: evidence against the importance of subcellular location of arginase and eNOS, Am. J. Physiol. Heart Circ. Physiol., 305, H651-666, https://doi.org/10.1152/ajpheart.00755.2012.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. 61

    Koo, B. H., Won, M. H., Kim, Y. M., and Ryoo, S. (2020) p32-Dependent p38 MAPK activation by arginase II downregulation contributes to endothelial nitric oxide synthase activation in HUVECs, Cells, 9, 392, https://doi.org/10.3390/cells9020392.

    CAS  Article  PubMed Central  Google Scholar 

  62. 62

    Rajapakse, A. G., Yepuri, G., Carvas, J. M., Stein, S., Matter, C. M., et al. (2011) Hyperactive S6K1 mediates oxidative stress and endothelial dysfunction in aging: inhibition by resveratrol, PLoS One, 6, e19237, https://doi.org/10.1371/journal.pone.0019237.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. 63

    Morris, S. M., Jr. (2009) Recent advances in arginine metabolism: roles and regulation of the arginases, Br. J. Pharmacol., 157, 922-930, https://doi.org/10.1111/j.1476-5381.2009.00278.x.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. 64

    Chandra, S., Romero, M. J., Shatanawi, A., Alkilany, A. M., Caldwell, R. B., and Caldwell, R. W. (2012) Oxidative species increase arginase activity in endothelial cells through the RhoA/Rho kinase pathway, Br. J. Pharmacol., 165, 506-519, https://doi.org/10.1111/j.1476-5381.2011.01584.x.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. 65

    Ming, X. F., Barandier, C., Viswambharan, H., Kwak, B. R., Mach, F., et al. (2004) Thrombin stimulates human endothelial arginase enzymatic activity via RhoA/ROCK pathway: implications for atherosclerotic endothelial dysfunction, Circulation, 110, 3708-3714, https://doi.org/10.1161/01.CIR.0000142867.26182.32.

    CAS  Article  PubMed  Google Scholar 

  66. 66

    Morris, S. M., Jr., Kepka-Lenhart, D., and Chen, L. C. (1998) Differential regulation of arginases and inducible nitric oxide synthase in murine macrophage cells, Am. J. Physiol., 275, E740-747, https://doi.org/10.1152/ajpendo.1998.275.5.E740.

    Article  PubMed  Google Scholar 

  67. 67

    Chandrasekharan, U. M., Wang, Z., Wu, Y., Tang, W., Hazen, S. L., Wang, S., and Husni, M. E. (2018) Elevated levels of plasma symmetric dimethylarginine and increased arginase activity as potential indicators of cardiovascular comorbidity in rheumatoid arthritis, Arthritis Res. Ther., 20, 123, https://doi.org/10.1186/s13075-018-1616-x.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. 68

    Liu, G. Y., and Sabatini, D. M. (2020) mTOR at the nexus of nutrition, growth, ageing and disease, Nat. Rev. Mol. Cell Biol., 21, 183-203, https://doi.org/10.1038/s41580-019-0199-y.

    CAS  Article  PubMed  Google Scholar 

  69. 69

    Jung, J. W., Kim, J. E., Kim, E., and Lee, J. W. (2020) Amino acid transporters as tetraspanin TM4SF5 binding partners, Exp. Mol. Med., 52, 7-14, https://doi.org/10.1038/s12276-019-0363-7.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. 70

    Scalise, M., Galluccio, M., Pochini, L., Cosco, J., Trotta, M., et al. (2019) Insights into the transport side of the human SLC38A9 transceptor, Biochim. Biophys. Acta Biomembr., 1861, 1558-1567, https://doi.org/10.1016/j.bbamem.2019.07.006.

    CAS  Article  PubMed  Google Scholar 

  71. 71

    Starikova, E. A., Lebedeva, A. M., Burova, L. A., and Freidlin, I. S. (2012) Regulation of endothelial cells functions by ultrasonic supernatant of Streptococcus pyogenes, Tsitologiya, 1, 49-46.

    Google Scholar 

  72. 72

    Starikova, E. A., Sokolov, A. V., Vlasenko, A. Y., Burova, L. A., Freidlin, I. S., and Vasilyev, V. B. (2016) Biochemical and biological activity of arginine deiminase from Streptococcus pyogenes M22, Biochem. Cell Biol., 94, 129-137, https://doi.org/10.1139/bcb-2015-0069.

    CAS  Article  PubMed  Google Scholar 

  73. 73

    Starikova, E. A., Mammedova, J. T., Burova, L. A., Sokolov, A. V., Vasilyev, V. B., and Freidlin, I. S. (2017) Effect of arginine deiminase from Streptococcus pyogenes on cytoskeleton structure and migration activity of human endothelial cells, Meditsinskaya Immunologiya, 19, 521-528, https://doi.org/10.15789/1563-0625-2017-5-521-528.

    Article  Google Scholar 

  74. 74

    Mammedova, J. T., Starikova, E. A., Burova, L. A., Malashicheva, A. B., Semenova, D. S., and Freidlin, I. S. (2017) Effect of arginine deiminase from Streptococcus pyogenes on proliferation and migration of human umbilical vein endothelial cells, Tsitokiny Vospaleniye, 3, 48-51.

    Google Scholar 

  75. 75

    Beloussow, K., Wang, L., Wu, J., Ann, D., and Shen, W. C. (2002) Recombinant arginine deiminase as a potential antiangiogenic agent, Cancer Lett., 183, 155-162, https://doi.org/10.1016/S0304-3835(01)00793-5.

    CAS  Article  PubMed  Google Scholar 

  76. 76

    Donato, A. J., Machin, D. R., and Lesniewski, L. A. (2018) Mechanisms of dysfunction in the aging vasculature and role in age-related disease, Circ. Res., 123, 825-848, https://doi.org/10.1161/CIRCRESAHA.118.312563.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  77. 77

    Galvan, V., and Hart, M. J. (2016) Vascular mTOR-dependent mechanisms linking the control of aging to Alzheimer’s disease, Biochim. Biophys. Acta, 1862, 992-1007, https://doi.org/10.1016/j.bbadis.2015.11.010.

    CAS  Article  PubMed  Google Scholar 

  78. 78

    Johnson, R. W., Kreis, H., Oberbauer, R., Brattstrom, C., Claesson, K., and Eris, J. (2001) Sirolimus allows early cyclosporine withdrawal in renal transplantation resulting in improved renal function and lower blood pressure, Transplantation, 72, 777-786.

    CAS  Article  Google Scholar 

  79. 79

    Lebranchu, Y., Thierry, A., Toupance, O., Westeel, P. F., Etienne, I., et al. (2009) Efficacy on renal function of early conversion from cyclosporine to sirolimus 3 months after renal transplantation: concept study, Am. J. Transplant., 9, 1115-1123.

    CAS  Article  Google Scholar 

  80. 80

    Carrizzo, A., Puca, A., Damato, A., Marino, M., Franco, E., et al. (2013) Resveratrol improves vascular function in patients with hypertension and dyslipidemia by modulating NO metabolism, Hypertension, 62, 359-366, https://doi.org/10.1161/HYPERTENSIONAHA.111.01009.

    CAS  Article  PubMed  Google Scholar 

  81. 81

    Gordish, K. L, and Beierwaltes, W. H. (2014) Resveratrol induces acute endothelium-dependent renal vasodilation mediated through nitric oxide and reactive oxygen species scavenging, Am. J. Physiol. Renal. Physiol., 306, F542-550.

    CAS  Article  Google Scholar 

  82. 82

    Gholizadeh, S., Visweswaran, G. R. R., Storm, G., Hennink, W. E., Kamps, J. A. A. M., and Kok, R. J. (2018) E-selectin targeted immunoliposomes for rapamycin delivery to activated endothelial cells, Int. J. Pharm., 548, 759-770, https://doi.org/10.1016/j.ijpharm.2017.10.027.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  83. 83

    Mangiacapra, F., Conte, M., Demartini, C., Muller, O., Delrue, L., et al. (2016) Relationship of asymmetric dimethylarginine (ADMA) with extent and functional severity of coronary atherosclerosis, Int. J. Cardiol., 220, 629-633, https://doi.org/10.1016/j.ijcard.2016.06.254.

    Article  PubMed  Google Scholar 

  84. 84

    Mahdi, A., Kövamees, O., and Pernow, J. (2020) Improvement in endothelial function in cardiovascular disease – is arginase the target? Int. J. Cardiol., 301, 207-214, https://doi.org/10.1016/j.ijcard.2019.11.004.

    Article  PubMed  Google Scholar 

  85. 85

    Montezano, A. C., and Touyz, R. M. (2012) Reactive oxygen species and endothelial function – role of nitric oxide synthase uncoupling and Nox family nicotinamide adenine dinucleotide phosphate oxidases, Basic Clin. Pharmacol. Toxicol., 110, 87-94, https://doi.org/10.1111/j.1742-7843.2011.00785.x.

    CAS  Article  PubMed  Google Scholar 

  86. 86

    Kurdi, A., De Meyer, G. R., and Martinet, W. (2016) Potential therapeutic effects of mTOR inhibition in atherosclerosis, Br. J. Clin. Pharmacol., 82, 1267-1279, https://doi.org/10.1111/bcp.12820.

    CAS  Article  PubMed  Google Scholar 

  87. 87

    Marchio, P., Guerra-Ojeda, S., Vila, J. M., Aldasoro, M., Victor, V. M., and Mauricio, M. D. (2019) Targeting early atherosclerosis: a focus on oxidative stress and inflammation, Oxid. Med. Cell. Longev., 2019, 8563845, https://doi.org/10.1155/2019/8563845.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  88. 88

    Arlouskaya, Y., Sawicka, A., Głowala, M., Giebułtowicz, J., Korytowska, N., et al. (2019) Asymmetric Dimethylarginine (ADMA) and Symmetric Dimethylarginine (SDMA) concentrations in patients with obesity and the risk of Obstructive Sleep Apnea (OSA), J. Clin. Med., 8, 897, https://doi.org/10.3390/jcm8060897.

    CAS  Article  PubMed Central  Google Scholar 

  89. 89

    Jia, G., Aroor, A. R., Martinez-Lemus, L. A., and Sowers, J. R. (2014) Overnutrition, mTOR signaling, and cardiovascular diseases, Am. J. Physiol. Regul. Integr. Compar. Physiol., 307, R1198-R1206, https://doi.org/10.1152/ajpregu.00262.2014.

    CAS  Article  Google Scholar 

  90. 90

    Oguntibeju, O. O. (2019) Type 2 diabetes mellitus, oxidative stress and inflammation: examining the links, Int. J. Physiol. Pathophysiol. Pharmacol., 11, 45-63.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91

    Daiber, A., Xia, N., Steven, S., Oelze, M., Hanf, A., et al. (2019) New therapeutic implications of endothelial Nitric Oxide Synthase (eNOS) function/dysfunction in cardiovascular disease, Int. J. Mol. Sci., 20, 187, https://doi.org/10.3390/ijms20010187.

    CAS  Article  PubMed Central  Google Scholar 

  92. 92

    Sandqvist, A., Schneede, J., Kylhammar, D., Henrohn, D., Lundgren, J., et al. (2018) Plasma L-arginine levels distinguish pulmonary arterial hypertension from left ventricular systolic dysfunction, Heart Vessels, 33, 255-263, https://doi.org/10.1007/s00380-017-1055-7.

    Article  PubMed  Google Scholar 

  93. 93

    Rabelo, L. A., Ferreira, F. O., Nunes-Souza, V., da Fonseca, L. J., and Goulart, M. O. (2015) Arginase as a critical prooxidant mediator in the binomial endothelial dysfunction-atherosclerosis, Oxid. Med. Cell. Longev., 2015, 924860, https://doi.org/10.1155/2015/924860.

    Article  PubMed  PubMed Central  Google Scholar 

  94. 94

    D’Uscio, L. V. (2011) eNOS uncoupling in pulmonary hypertension, Cardiovasc. Res, 92, 359-360, https://doi.org/10.1093/cvr/cvr270.

    CAS  Article  PubMed  Google Scholar 

  95. 95

    Kumar, V., Evans, L. C., Kurth, T., Yang, C., Wollner, C., et al. (2019) Therapeutic suppression of mTOR (Mammalian Target of Rapamycin) signaling prevents and reverses salt-induced hypertension and kidney injury in dahl salt-sensitive rats, Hypertension, 73, 630-639, https://doi.org/10.1161/HYPERTENSIONAHA.118.12378.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  96. 96

    Bruno, R. M., Masi, S., Taddei, M., Taddei, S., and Virdis, A. (2018) Essential hypertension and functional microvascular ageing, High Blood Press Cardiovasc. Prev., 25, 35-40, https://doi.org/10.1007/s40292-017-0245-9.

    Article  PubMed  Google Scholar 

  97. 97

    Incalza, M. A., D’Oria, R., Natalicchio, A., Perrini, S., Laviola, L., and Giorgino, F. (2018) Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases, Vascul. Pharmacol., 100, 1-19, https://doi.org/10.1016/j.vph.2017.05.005.

    CAS  Article  PubMed  Google Scholar 

  98. 98

    McCabe, T. J., Fulton, D., Roman, L. J., and Sessa, W. C. (2000) Enhanced electron flux and reduced calmodulin dissociation may explain “calcium-independent” eNOS activation by phosphorylation, J. Biol. Chem., 275, 6123-6128.

    CAS  Article  Google Scholar 

  99. 99

    Yepuri, G., Velagapudi, S., Xiong, Y., Rajapakse, A. G., Montani, J. P., et al. (2012) Positive crosstalk between arginase-II and S6K1 in vascular endothelial inflammation and aging, Aging Cell, 11, 1005-1016, https://doi.org/10.1111/acel.12001.

    CAS  Article  PubMed  Google Scholar 

  100. 100

    Grandvuillemin, I., Buffat, C., Boubred, F., Lamy, E., Fromonot, J., et al. (2018) Arginase upregulation and eNOS uncoupling contribute to impaired endothelium-dependent vasodilation in a rat model of intrauterine growth restriction, Am. J. Physiol. Regul. Integr. Comp. Physiol., 315, R509-R520, https://doi.org/10.1152/ajpregu.00354.2017.

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Eleonora A. Starikova.

Ethics declarations

The authors declare no conflict of interests in financial or any other sphere. This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mammedova, J.T., Sokolov, A.V., Freidlin, I.S. et al. The Mechanisms of L-Arginine Metabolism Disorder in Endothelial Cells. Biochemistry Moscow 86, 146–155 (2021). https://doi.org/10.1134/S0006297921020036

Download citation

Keywords

  • L-arginine
  • endothelium
  • nitric oxide
  • eNOS
  • arginase
  • mTOR