Structural and Functional Aspects of Electron Transport Thermoregulation and ATP Synthesis in Chloroplasts

Abstract

The review is focused on analysis of the mechanisms of temperature-dependent regulation of electron transport and ATP synthesis in chloroplasts of higher plants. Importance of photosynthesis thermoregulation is determined by the fact that plants are ectothermic organisms, whose own temperature depends on the ambient temperature. The review discusses the effects of temperature on the following processes in thylakoid membranes: (i) photosystem 2 activity and plastoquinone reduction; (ii) electron transfer from plastoquinol (via the cytochrome b6f complex and plastocyanin) to photosystem 1; (iii) transmembrane proton transfer; and (iv) ATP synthesis. The data on the relationship between the functional properties of chloroplasts (photosynthetic transfer of electrons and protons, functioning of ATP synthase) and structural characteristics of membrane lipids (fluidity) obtained by electron paramagnetic resonance studies are presented.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Abbreviations

Chl:

chlorophyll

DGDG:

digalactosyldiacylglycerol

EPR:

electron paramagnetic resonance

ETC:

electron transport chain

Fd:

ferredoxin

ISP:

iron-sulfur protein

MGDG:

monogalactosyldiacylglycerol

PS1/2:

photosystem1/2

P700 and P680 :

primary electron donors in PS1 and PS2, respectively

Pc:

plastocyanin

Phe:

pheophytin

PQ:

plastoquinone

PQH2 :

plastoquinol

References

  1. 1

    Nelson, N., and Yocum, C. F. (2006) Structure and function of photosystems I and II, Annu. Rev. Plant Biol., 57, 521-565.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. 2

    Mamedov, M., Govindjee, G., Nadtochenko, V., and Semenov, A. (2015) Primary electron transfer processes in photosynthetic reaction centers from oxygenic organisms, Photosynth. Res., 125, 51-63.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. 3

    Boyer, P. D. (1997) The ATP synthase – a splendid molecular machine, Annu. Rev. Biochem., 66, 717-749.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  4. 4

    Walker, J. E. (2013) The ATP synthase: the understood, the uncertain and the unknown, Biochem. Soc. Trans., 41, 1-16.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. 5

    Edwards, G., and Walker, D. (1983) C3, C4: Mechanisms, and Cellular and Environmental Regulation, of Photosynthesis, Univ. of California Press, Berkeley.

  6. 6

    Staehelin, L. A. (2003) Chloroplast structure: from chlorophyll granules to supra-molecular architecture of thylakoid membranes, Photosynth. Res., 76, 185-196.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7

    Dekker, J. P., and Boekema, E. J. (2005) Supermolecular organization of the thylakoid membrane proteins in green plants, Biochim. Biophys. Acta, 1706, 12-39.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. 8

    Anderson, J. M. (1982) Distribution of the cytochromes of spinach chloroplasts between the appressed membranes of grana stacks and stroma-exposed thylakoid regions, FEBS Lett., 138, 62-66.

    CAS  Article  Google Scholar 

  9. 9

    Boudiere, L., Michaud, M., Petroutsos, D., Rébeillé, F., Falconet, D., et al. (2014) Glycerolipids in photosynthesis: composition, synthesis and trafficking, Biochim. Biophys. Acta, 1837, 470-480.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  10. 10

    He, M., and Ding, N.-Z. (2020) Plant unsaturated fatty acids: multiple roles in stress response, Front. Plant Sci., 11, 562785, doi: https://doi.org/10.3389/fpls.2020.562785.

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11

    Cramer, W. A, and Hasan, S. S. (2016) Structure-function of the cytochrome b6f lipoprotein complex, in Cytochrome Complexes: Evolution, Structures, Energy Transduction, and Signaling (Cramer, W. A, and Kallas, T., eds.), Springer Link, pp. 177-207.

  12. 12

    Witt, H. T. (1979) Energy conversion in the functional membrane of photosynthesis. Analysis by light pulse and electric pulse methods, Biochim. Biophys. Acta, 505, 355-427.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  13. 13

    Haehnel, W. (1984) Photosynthetic electron transport in higher plants, Annu. Rev. Plant Physiol., 35, 659-693.

    CAS  Article  Google Scholar 

  14. 14

    Kirchhoff, H., Horstmann, S., and Weis, E. (2000) Control of the photosynthetic electron transport by PQ diffusion microdomains in thylakoids of higher plants, Biochim. Biophys. Acta, 1459, 148-168.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15

    Cardona, T., Sedoud, A., Cox, N., and Rutherford, A. W. (2012) Charge separation in photosystem II: a comparative and evolutionary overview, Biochim. Biophys. Acta, 1817, 26-43.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16

    Tikhonov, A. N. (2013) pH-Dependent regulation of electron transport and ATP synthesis in chloroplasts, Photosynth. Res., 116, 511-534.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17

    Tikhonov, A. N. (2014) The cytochrome b6f complex at the crossroad of photosynthetic electron transport pathways, Plant. Physiol. Biochem., 81, 163-183.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. 18

    Brettel, K. (1997) Electron transfer and arrangement of the redox cofactors in photosystem I, Biochim. Biophys. Acta, 1318, 322-373.

    CAS  Article  Google Scholar 

  19. 19

    Fromme, P., Jordan, P., and Krauss, N. (2001) Structure of photosystem I, Biochim. Biophys. Acta, 1507, 5-31.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20

    DeVault, D. (1980) Quantum mechanical tunnelling in biological systems, Q. Rev. Biophys., 13, 387-564.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. 21

    Page, C. C, Moser, C. C., Chen, X., and Dutton, P. L. (1999) Natural engineering principles of electron tunnelling in biological oxidation-reduction, Nature, 402, 47-52.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. 22

    Kirchhoff, H., Hall, C., Wood, M., Herbstová, M., Tsabari, O., et al. (2011) Dynamic control of protein diffusion within the granal thylakoid lumen, Proc. Natl. Acad. Sci. USA, 108, 20248-20253.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23

    Haehnel, W. (1976) The reduction kinetics of chlorophyll a1 as an indicator of for proton uptake between the light reactions in chloroplasts, Biochim. Biophys. Acta, 440, 506-521.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24

    Tikhonov, A. N., Khomutov, G. B., and Ruuge, E. K. (1984) Electron transport control in chloroplasts. Effects of magnesium ions on the electron flow between two photosystems, Photobiochem. Photobiophys., 8, 261-269.

    CAS  Google Scholar 

  25. 25

    Zouni, A., Witt, H. T., Kern, J., Fromme, P., Krauss, N., Saenger, W., and Orth, P. (2001) Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution, Nature, 409, 739-743.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26

    Allakhverdiev, S. I. (2011) Recent progress in the studies of structure and function of photosystem II, J. Photochem. Photobiol. B, 104, 1-8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27

    Müh, F., Glöckner, C., Hellmich, J., and Zouni, A. (2012) Light-induced quinone reduction in photosystem II, Biochim. Biophys. Acta, 1817, 44-65.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  28. 28

    Mitchell, P. (1976) Possible molecular mechanisms of the protonmotive function of cytochrome systems, J. Theor. Biol., 62, 327-367.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29

    Cramer, W. A., Hasan, S. S., and Yamashita, E. (2011) The Q cycle of cytochrome bc complexes: a structure perspective, Biochim. Biophys. Acta, 1807, 788-802.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30

    Tikhonov, A. N. (2018) The cytochrome b6f complex: biophysical aspects of its functioning in chloroplasts, Subcell. Biochem., 87, 287-328, doi: https://doi.org/10.1007/978-981-10-7757-9_10.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31

    Ivanov, B. (1993) Stoichiometry of proton uptake by thylakoids during electron transport in chloroplasts, in Photosynthesis: Photoreactions to Plant Productivity (Abrol, Y. P., Mohanty, P., Govindjee, G., eds.) Springer, Dordrecht, pp. 108-128.

  32. 32

    Hong, S. J., Ugulava, N., Guergova-Kuras, M., and Crofts, A. R. (1999) The energy landscape for ubihydroquinone oxidation at the Qo-site of the bc1 complex in Rhodobacter sphaeroides, J. Biol. Chem., 274, 33931-33944.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. 33

    Crofts, A. R., Guergova-Kuras, M., Kuras, R., Ugulava, N., Li, J., and Hong, S. (2000) Proton-coupled electron transfer at the Qo-site: what type of mechanism can account for the high activation barrier? Biochim. Biophys. Acta, 1459, 456-466.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34

    Crofts, A. R. (2004) Proton-coupled electron transfer at the Qo-site of the bc1 complex controls the rate of ubihydroquinone oxidation, Biochim. Biophys. Acta, 1655, 77-92.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35

    Crofts, A. R., Hong, S., Wilson, C., Burton, R., Victoria, D., et al. (2013) The mechanism of ubihydroquinone oxidation at the Qo-site of the cytochrome bc1 complex, Biochim. Biophys. Acta, 1827, 1362-1377.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36

    Ustynyuk, L. Yu., and Tikhonov, A. N. (2018) The cytochrome b6f complex: DFT modeling of the first step of plastoquinol oxidation by the iron-sulfur protein, J. Organomet. Chem., 867, 290-299.

    CAS  Article  Google Scholar 

  37. 37

    Wada, H., and Murata, N. (2009) Lipids in Photosynthesis: Essential and Regulatory Functions, Springer, Dordrecht.

  38. 38

    Zhou, Y., vom Dorp, K., Dörman, P., and Hölzl, G. (2016) Chloroplast lipids, in Chloroplasts. Current Research and Future Trends, Caister Academic Press, pp. 1-24.

  39. 39

    Los, D. A., and Murata, N. (2004) Membrane fluidity and its role in the perception of environmental signals, Biochim. Biophys. Acta, 1666, 142-157.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. 40

    Los, D. A., Mironov, K. S., and Allakhverdiev, S. I. (2013) Regulatory role of membrane fluidity in gene expression and physiological functions, Photosynth. Res., 116, 489-509.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. 41

    Maksimov, E. G., Mironov, K. S., Trofimova, M. S., Nechaeva, N. L., Todorenko, D. A., et al. (2017) Membrane fluidity controls redox-regulated cold stress responses in cyanobacteria, Photosynth. Res., 133, 215-223.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Hasan, S. S., and Cramer, W. A. (2014) Internal lipid architecture of the hetero-oligomeric cytochrome b6f complex, Structure, 22, 1-8.

    Article  CAS  Google Scholar 

  43. 43

    Hope, A. B. (2000) Electron transfers amongst cytochrome f, plastocyanin and photosystem I: kinetics and mechanisms, Biochim. Biophys. Acta, 1456, 5-26.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. 44

    Santabarbara, S., Redding, K. E., and Rappaport, F. (2009) Temperature dependence of the reduction of P700+ by tightly bound plastocyanin in vivo, Biochemistry, 48, 10457-10466.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. 45

    Kramer, D. M., Sacksteder, C. A., and Cruz, J. A. (1999) How acidic is the lumen? Photosynth. Res., 60, 151-163.

    CAS  Article  Google Scholar 

  46. 46

    Foyer, C. H., Neukermans, J., Queval, G., Noctor, G., and Harbinson, J. (2012) Photosynthetic control of electron transport and the regulation of gene expression, J. Exp. Bot., 63, 1637-1661.

    CAS  Article  Google Scholar 

  47. 47

    Tikhonov, A. N., Khomutov, G. B., Ruuge, E. K., and Blumenfeld, L. A. (1981) Electron transport control in chloroplasts. Effects of photosynthetic control monitored by the intrathylakoid pH, Biochem. Biophys. Acta, 637, 321-333.

    CAS  Google Scholar 

  48. 48

    Li, Z., Wakao, S., Fischer, B. B., and Niyogi, K. K. (2009) Sensing and responding to excess light, Annu. Rev. Plant Biol., 60, 239-260.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  49. 49

    Demmig-Adams, B., Cohu, C. M., Muller, O., and Adams, W. W., 3rd (2012) Modulation of photosynthetic energy conversion efficiency in nature: from seconds to seasons, Photosynth. Res., 113, 75-88.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. 50

    Horton, P. (2012) Optimization of light harvesting and photoprotection: molecular mechanisms and physiological consequences, Phil. Trans. R. Soc. B, 367, 3455-3465.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  51. 51

    Chance, B., and Williams, G. R. (1956) The respiratory chain and oxidative phosphorylation, Adv. Enzymol., 17, 65-134.

    CAS  Google Scholar 

  52. 52

    Berry, J., and Björkman, O. (1980) Photosynthetic response and adaptation to temperature in higher plants, Annu. Rev. Plant Physiol., 31, 491-543.

    Article  Google Scholar 

  53. 53

    Hu, S., Ding, Y., and Zhu, C. (2020) Sensitivity and responses of chloroplasts to heat stress in plants, Front. Plant Sci., 11, 375-385, doi: https://doi.org/10.3389/fpls.2020.00375.

    Article  PubMed  PubMed Central  Google Scholar 

  54. 54

    Quinn, P. J., and Williams, W. P. (1978) Plant lipids and their role in membrane function, Progr Biophys. Mol. Biol., 34, 107-173.

    Google Scholar 

  55. 55

    Wallis, J. G., and Browse, J. (2002) Mutants of Arabidopsis reveal many roles for membrane lipids, Prog. Lipid Res., 41, 254-278.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  56. 56

    Margolis, L. B., Tikhonov, A. N., and Vasilieva, E. Yu. (1980) Platelet adhesion to fluid and solid phospholipid membranes, Cell, 19, 189-194.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  57. 57

    Ford, R. C., and Barber, J. (1983) Incorporation of sterol into chloroplast thylakoid membranes and its effect on fluidity and function, Planta, 158, 35-41.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  58. 58

    Sawada, S., and Miyachi, S. (1974) Effects of growth temperature on photosynthetic carbon metabolism in green plants. I. Photosynthetic activities of various plants acclimatized to varied temperatures, Plant Cell Physiol., 15, 111-120.

    CAS  Google Scholar 

  59. 59

    Murata, N., and Fork, D. C. (1977) Temperature dependence of the light-induced spectral shift of carotenoids in Cvanidium caldarium and higher plant leaves. Evidence for an effect of the physical phase of chloroplast membrane lipids on the permeability of the membranes to ions, Biochim. Biophys. Acta, 461, 365-378.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  60. 60

    Nolan, W. G. (1980) Effect of temperature on electron transport activities of isolated chloroplasts, Plant Physiol., 66, 234-237.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. 61

    Nolan, W. G. (1981) Effect of temperature on proton efflux from isolated chloroplast thylakoids, Plant Physiol., 67, 1259-1263.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. 62

    Tikhonov, A. N., Khomutov, G. B., and Ruuge, E. K. (1980) Electron spin resonance of electron transport in photosynthetic systems. IX. Temperature dependence of the kinetics of P700 redox transients in bean chloroplasts induced by flashes of different duration, Mol. Biol. (Moscow), 14, 157-171.

    CAS  Google Scholar 

  63. 63

    Tikhonov, A. N., Khomutov, G. B., and Ruuge, E. K. (1981) Electron paramagnetic resonance of electron transport in photosynthetic systems. XI. Effects of photosynthetic control: dependence of the rate of electron transport on the energization of bean chloroplast thylakoid membrane, Mol. Biol. (Moscow), 15, 182-198.

    Google Scholar 

  64. 64

    Tikhonov, A. N., Timoshin, A. A., and Bliumenfel’d, L. A., (1983) Kinetics of electron transport, proton transfer and photophosphorylation in chloroplasts and their relation to temperature-induced structural changes in the thylakoid membrane, Mol. Biol. (Moscow), 17, 1236-1248.

    CAS  Google Scholar 

  65. 65

    Tikhonov, A. N., Timoshin, A. A., and Bliumenfel’d, L. A. (1984) Thermoinduced structural transition of ATP synthase as a factor regulating energy coupling in chloroplasts, Biofizika, 29, 338-349.

    Google Scholar 

  66. 66

    Tikhonov, A. N., and Vershubskii, A. V. (2017) Connectivity between electron transport complexes and modulation of photosystem II activity in chloroplasts, Photosynth. Res., 133, 103-114.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  67. 67

    Stiehl, H. H., and Witt, H. T. (1969) Quantitative treatment of the function of plastoquinone in photosynthesis, Z. Naturforsch. B, 24, 1588-1598.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  68. 68

    Brandt, U. (1996) Bifurcated ubihydroquinone oxidation in the cytochrome bc1 complex by proton-gated charge transfer, FEBS Lett., 387, 1-6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  69. 69

    Link, T. A. (1997) The role of the “Rieske” iron sulfur protein in the hydroquinone oxidation (Qp) site of the cytochrome bc1 complex: the “proton-gated affinity change” mechanism, FEBS Lett., 412, 257-264.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  70. 70

    Stroebel, D., Choquet, Y., Popot, J.-L., and Picot, D. (2003) An atypical heam in the cytochrome b6f complex, Nature, 426, 413-418.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  71. 71

    Kurisu, G., Zhang, H., Smith, J. L., and Cramer, W. A. (2003) Structure of the cytochrome b6f complex of oxygenic photosynthesis: tuning the cavity, Science, 302, 1009-1014.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  72. 72

    Zu, Y., Manon, M.-J., Couture, M. M.-J., Kolling, D. R. J., Crofts, A. R., et al. (2003) Reduction potentials of Rieske clusters: importance of the coupling between oxidation state and histidine protonation state, Biochemistry, 42, 12400-12408.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  73. 73

    Zhang, Z., Huang, L., Shulmeister, V. M., Chi, Y. I., Kim, K. K., et al. (1998) Electron transfer by domain movement in cytochrome bc1, Nature, 392, 677-684.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  74. 74

    Hasan, S. S., Stofleth, J. T., Yamashita, E., and Cramer, W. A. (2013) Lipid-induced conformational changes within the cytochrome b6f complex of oxygenic photosynthesis, Biochemistry, 52, 2649-2654.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. 75

    Gong, X.-S., Chung, S., and Fernandez-Velasco, J. G. (2001) Electron transfer and stability of the cytochrome b6f complex in a small domain deletion mutant of cytochrome f, J. Biol. Chem., 276, 24365-24371.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  76. 76

    Yan, J., and Cramer, W. A. (2003) Functional insensitivity of the cytochrome b6f complex to structure changes in the hinge region of the Rieske iron–sulfur protein, J. Biol. Chem., 278, 20926-20933.

    Google Scholar 

  77. 77

    Tikhonov, A. N., and Subczynski, W. K. (2005) Application of spin labels to membrane bioenergetics (photosynthetic systems of higher plants), in Biological Magnetic Resonance (Eaton, S. S., Eaton, G. R., and Berliner, L. J., eds.) Kluwer Academic/Plenum Publishers, New York, pp. 147-194.

  78. 78

    Kukushkin, A. K., and Tikhonov, A. N. (1988) Lectures on the biophysics of higher plants, Moscow State University, Moscow.

  79. 79

    Griffith, O. H., and Jost, P. C. (1976) Lipid spin labels in biological membranes, in Spin Labeling: Theory and Applications, Academic Press, New York-London, pp. 456-524.

  80. 80

    Ligeza, A., Tikhonov, A. N., Hyde, J. S., and Subczynski, W. K. (1998) Oxygen permeability of thylakoid membranes: electron paramagnetic resonance spin labeling study, Biochim. Biophys. Acta, 1365, 453-463.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  81. 81

    Heise, K.-P., and Harnischfeger, G. (1978) Correlation between photosynthesis and plant lipid composition, Z. Naturforsch., 33, 537-546.

    Article  Google Scholar 

  82. 82

    Tikhonov, A. N., and Vershubskii, A. V. (2014) Computer modeling of electron and proton transport in chloroplasts, BioSystems, 121, 1-21.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  83. 83

    Vershubskii, A. V., Trubitsin, B. V., Priklonskii, V. I., and Tikhonov, A. N. (2017) Lateral heterogeneity of the proton potential along the thylakoid membranes of chloroplasts, Biochim. Biophys. Acta, 1859, 388-401.

    CAS  Article  Google Scholar 

  84. 84

    Tikhonov, A. N., and Vershubskii, A. V. (2020) Temperature-dependent regulation of electron transport and ATP synthesis in chloroplasts in vitro and in silico, Photosynth. Res., 146, 299-329.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  85. 85

    Ryzhikov, S. B., and Tikhonov, A. N. (1988) Regulation of the rate of electron transfer in photosynthetic membranes of higher plants, Biofizika, 33, 642-646.

    CAS  Google Scholar 

  86. 86

    Tikhonov, A. N. (2015) Induction events and short-term regulation of electron transport in chloroplasts: an overview, Photosynth. Res., 125, 65-94.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  87. 87

    Schneider, A. R., and Geissler, P. L. (2013) Coexistance of fluid and crystalline phases of proteins in photosynthetic membranes, Biophys. J., 105, 1161-1170.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  88. 88

    Jordan, P., Fromme, P., Witt, H. T., Klukas, O., Saenger, W., and Krauss, N. (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution, Nature, 411, 909-917.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

We dedicate this work to the memory of Alexander A. Konstantinov, with whom one of the authors (A. N. T.) had a privilege to study electron transport in the mitochondrial ETC using the EPR method. The authors are grateful to E. K. Ruuge, A. A. Timoshin, and G. B. Khomutov for shared data. We also thank an anonymous reviewer of this article for valuable comments and corrections.

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 18-04-00214).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alexander N. Tikhonov.

Ethics declarations

The authors declare no conflict of interest. This article contains no description of experiments with the involvement of humans or animals performed by any of the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vershubskii, A.V., Tikhonov, A.N. Structural and Functional Aspects of Electron Transport Thermoregulation and ATP Synthesis in Chloroplasts. Biochemistry Moscow 86, 92–104 (2021). https://doi.org/10.1134/S0006297921010090

Download citation

Keywords

  • photosynthesis
  • chloroplasts
  • electron transport
  • thylakoid membranes
  • temperature-dependent regulation