Highly-Active Recombinant Formate Dehydrogenase from Pathogenic Bacterium Staphylococcus aureus: Preparation and Crystallization


NAD+-dependent formate dehydrogenase from Staphylococcus aureus (SauFDH) is one of the key enzymes responsible for the survival of this pathogen in the form of biofilms. 3D structure of the enzyme might be helpful in the search for highly specific SauFDH inhibitors that can be used as antibacterial agents exactly against S. aureus biofilms. Here, we prepared a recombinant SauFDH in Escherichia coli cells with a yield of 1 g target protein per liter medium. The developed procedure for the enzyme purification allowed to obtain 400 mg of homogenous enzyme with 61% yield. The specific activity of the purified recombinant SauFDH was 20 U per mg protein, which was 2 times higher than the previously reported activities of formate dehydrogenases. We also found crystallization conditions in the course of two rounds of optimization and obtained 200- and 40-µm crystals for the SauFDH apo- and holoenzymes, respectively. X-ray analysis using synchrotron X-ray sources produced diffraction data sufficient for solving the three-dimensional structures of the apo- and holoenzymes with the resolution of 2.2 and 2.7 Å, respectively. Crystals of the apo- and holoforms of SauFDH had different crystal space groups, which suggest coenzyme binding in the SauFDH holoenzyme.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.



formate dehydrogenase


formate dehydrogenase from Staphylococcus aureus


formate dehydrogenase from Pseudomonas sp. 101


  1. 1

    Tishkov, V. I., and Popov, V. O. (2004) Catalytic mechanism and application of formate dehydrogenase, Biochemistry (Moscow), 69, 1252-1267, doi: 10.1007/s10541-005-0071-x.

    CAS  Article  Google Scholar 

  2. 2

    Tishkov, V. I., and Popov, V. O. (2006) Protein engineering of formate dehydrogenase, Biomol. Eng., 23, 89-110, doi: 10.1016/j.bioeng.2006.02.003.

    CAS  Article  Google Scholar 

  3. 3

    Alekseeva, A. A., Savin, S. S., and Tishkov, V. I. (2011) NAD+-dependent formate dehydrogenase from plants, Acta Naturae, 3, 38-54, PMID: 22649703.

    CAS  Article  Google Scholar 

  4. 4

    Resch, A., Rosenstein, R., Nerz, C., and Gotz, F. (2005) Differential gene expression profiling of Staphylococcus aureus cultivated under biofilm and planktonic conditions, Appl. Environ. Microbiol., 71, 2663-2676.

    CAS  Article  Google Scholar 

  5. 5

    Tishkov, V. I., Pometun, A. A., Stepashkina, A. V., Fedorchuk, V. V., Zarubina, S. A., Kargov, I. S., Atroshenko, D. L., Parshin, P. D., Kovalevski, R. P., Boiko, K. M., Eldarov, M. A., D’Oronzo, E., Facheris, S., Secundo, F., and Savin, S. S. (2018) Rational design of practically important enzymes, Moscow Univ. Chem. Bull., 73, 1-6, doi: 10.3103/S0027131418020153.

    Article  Google Scholar 

  6. 6

    Pace, C. N., Vajdos, F., Fee, L., Grimsley, G., and Gray, T. (1995) How to measure and predict the molar absorption coefficient of a protein, Protein Sci., 4, 2411-2423, doi: 10.1002/pro.5560041120.

    CAS  Article  Google Scholar 

  7. 7

    Boyko, K. M., Lipkin, A. V., Popov, V. O., and Kovalchuk, M. V. (2013) From gene to structure: the protein factory of the NBICS centre of Kurchatov institute, Crystallogr. Rep., 58, 442-449, doi: 10.1134/S106377451105004x.

    CAS  Article  Google Scholar 

  8. 8

    De Sanctis, D., Beteva, A., Caserotto, H., Dobias, F., Gabadinho, J., Giraud, T., Gobbo, A., Guijarro, M., Lentini, M., Lavault, B., Mairs, T., McSweeney, S., Petitdemange, S., Rey-Bakaikoa, V., Surr, J., Theveneau, P., Leonard, G. A., and Mueller-Dieckmann, C. (2012) ID29: a high-intensity highly automated ESRF beamline for macromolecular crystallography experiments exploiting anomalous scattering, J. Synchrotron Radiat., 19, 455-461, doi: 10.1107/S0909049512009715.

    CAS  Article  Google Scholar 

  9. 9

    Otwinowski, Z., and Minor, W. (1997) Processing of X-ray diffraction data collected in oscillation mode, Methods Enzymol., 276, 307-326.

    CAS  Article  Google Scholar 

  10. 10

    Bourenkov, G. P., and Popov, A. N. (2006) A quantitative approach to data-collection strategies, Acta Crystallogr. D Biol. Crystallogr., 62, 58-64, doi: 10.1107/S0907444905033998.

    Article  Google Scholar 

  11. 11

    Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R., and Leslie, A. G. W. (2011) iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM, Acta Crystallogr. D Biol. Crystallogr., 67, 271-281, doi: 10.1107/S0907444910048675.

    CAS  Article  Google Scholar 

  12. 12

    Kabsch, W. (2010) XDS, Acta Crystallogr. D Biol. Crystallogr., 66, 125-132, doi: 10.1107/S0907444909047337.

    CAS  Article  Google Scholar 

  13. 13

    Yu, S., Zhu, L., Zhou, C., An, T., Zhang, T., Jiang, B., and Mu, W. (2014) Promising properties of a formate dehydrogenase from a methanol-assimilating yeast Ogataea parapolymorpha DL-1 in His-tagged form, Appl. Microbiol. Biotechnol., 98, 1621-1630, doi: 10.1007/s00253-013-4996-5.

    CAS  Article  Google Scholar 

  14. 14

    Ordu, E. B., and Karagüler, N. G. (2007) Improving the purification of NAD+-dependent formate dehydrogenase from Candida methylica, Prepar. Biochem. Biotechnol., 37, 333-341, doi: 10.1080/10826060701593233.

    CAS  Article  Google Scholar 

  15. 15

    Esen, H., Alpdağtaş, S., Mervan Çakar, M., and Binay, B. (2019) Tailoring of recombinant FDH: effect of histidine tag location on solubility and catalytic properties of Chaetomium thermophilum formate dehydrogenase (CtFDH), Prepar. Biochem. Biotechnol., 49, 529-534, doi: 10.1080/10826068.2019.1599394.

    CAS  Article  Google Scholar 

  16. 16

    Pometun, A. A., Parshin, P. D., Galanicheva, N. P., Uporov, I. V., Atroshenko, D. L., Savin, S. S., and Tishkov, V. I. (2020) Effect of His6 sequence on properties of formate dehydrogenases from bacterium Pseudomonas sp. 101, Moscow Univ. Chem. Bull., 75, 4.

    Google Scholar 

  17. 17

    Rojkova, A. M., Galkin, A. G., Kulakova, L. B., Serov, A. E., Savitsky, P. A., Fedorchuk, V. V., and Tishkov, V. I. (1999) Bacterial formate dehydrogenase. Increasing the enzyme thermal stability by hydrophobization of alpha helices, FEBS Lett., 445, 183-188, doi: 10.1016/S0014-5793(99)00127-1.

    CAS  Article  Google Scholar 

  18. 18

    Pometun, A. A., Kleymenov, S. Yu., Zarubina, S. A., Kargov, I. S., Parshin, P. D., Sadykhov, E. G., Savin, S. S., and Tishkov, V. I. (2018) Comparison of thermal stability of new formate dehydrogenases with differential scanning calorimetry, Moscow Univ. Chem. Bull., 73, 80-84, doi: 10.3103/S002713141802013X.

    Article  Google Scholar 

  19. 19

    Slusarczyk, H., Felber, S., Kula, M. R., and Pohl, M. (2000) Stabilization of NAD-dependent formate dehydrogenase from Candida boidinii by site-directed mutagenesis of cysteine residues, Eur. J. Biochem., 267, 1280-1289, doi: 10.1046/j.1432-1327.2000.01123.x.

    CAS  Article  Google Scholar 

  20. 20

    Tishkov, V. I., Goncharenko, K. V., Alekseeva, A. A., Kleymenov, S. Yu., and Savin, S. S. (2015) Role of a structurally equivalent phenylalanine residue in catalysis and thermal stability of formate dehydrogenases from different sources, Biochemistry (Moscow), 80, 1690-1700, doi: 10.1134/S000629791513005.

    CAS  Article  Google Scholar 

  21. 21

    Alekseeva, A. A., Fedorchuk, V. V., Zarubina, S. A., Sadykhov, E. G., Matorin, A. D., Savin, S. S., and Tishkov, V. I. (2015) Role of Ala198 in stability and coenzyme specificity of bacterial formate dehydrogenases, Acta Naturae, 7, 60-69, PMID: 25927002.

    CAS  Article  Google Scholar 

  22. 22

    Slusarczyk, H., Felber, S., Kula, M.-R., and Pohl, M. (2003) Novel mutants of formate dehydrogenase from Candida boidinii, US Patent Application Publication, US2003/0157664, 21.09.2003.

  23. 23

    Kargov, I. S., Kleymenov, S. Y., Savin, S. S., Tishkov, V. I., and Alekseeva, A. A. (2015) Improvement of the soy formate dehydrogenase properties by rational design, Prot. Eng. Des. Select., 28, 171-178, doi: 10.1093/protein/gzv007.

    CAS  Article  Google Scholar 

  24. 24

    Matthews, B. W. (1968) Solvent content of protein crystals, J. Mol. Biol., 33, 491-497, doi: 10.1016/0022-2836(68)90205-2.

    CAS  Article  Google Scholar 

  25. 25

    Winn, M. D., Ballard, C. C., Cowtan, K. D., Dodson, E. J., Emsley, P., Evans, P. R., Keegan, R. M., Krissinel, E. B., Leslie, A. G., McCoy, A., McNicholas, S. J., Murshudov, G. N., Pannu, N. S., Potterton, E. A., Powell, H. R., Read, R. J., Vagin, A., and Wilson, K. S. (2011) Overview of the CCP4 suite and current developments, Acta Crystallogr. D Biol. Crystallogr., 67, 235-242, doi: 10.1107/S0907444910045749.

    CAS  Article  Google Scholar 

Download references


Some experiments were carried out using equipment from the Industrial Biotechnology Center of Collective Use, Fundamentals of Biotechnology Research Centre, Russian Academy of Sciences.


This work was supported by the Russian Foundation for Basic Research (projects Nos. 17-04-01662 and 20-04-00915, production and crystallization of enzymes), by the Federal Space Agency of Russia (Crystallizer experiment, crystallization and collection of X-ray diffraction data), and by the Ministry of Science and Higher Education of the Russian Federation (preliminary analysis of X-ray diffraction data).

Author information



Corresponding author

Correspondence to V. I. Tishkov.

Ethics declarations

This article does not contain any studies with humans or animals performed by any of the authors. The authors declare no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pometun, A., Boyko, K., Yurchenko, T. et al. Highly-Active Recombinant Formate Dehydrogenase from Pathogenic Bacterium Staphylococcus aureus: Preparation and Crystallization. Biochemistry Moscow 85, 689–696 (2020). https://doi.org/10.1134/S0006297920060061

Download citation


  • formate dehydrogenase
  • Staphylococcus aureus
  • expression
  • purification
  • crystallization
  • X-ray diffraction analysis