Skip to main content
Log in

Analysis of Direct Effects of the CB1 Receptor Antagonist Rimonabant on Fatty Acid Oxidation and Glycogenolysis in Liver and Muscle Cells in vitro

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Recent pharmacological findings regarding rimonabant, an anorectic and cannabinoid type 1 receptor (CB1R) antagonist, strongly suggest that some of its effects on the metabolic parameters and energy balance in rats are not related to the centrally mediated reduction in caloric intake. Instead, they may be associated with acute induction of glycogenolysis in the liver, in combination with transient increase in glucose oxidation and persistent increase in fat oxidation. It is possible that rimonabant produced direct shortor long-term stimulatory effect on these processes in primary and cultured rat cells. Rimonabant slightly stimulated β-oxidation of long-chain fatty acids in cultured rat myocytes overexpressing glucose transporter isoform 4, as well as activated phosphorylation of adenosine monophosphate-dependent protein kinase (AMPK) in primary rat hepatocytes upon long-term incubation. However, short-term action of rimonabant failed to stimulate β-oxidation in myocytes, myotubes, and hepatocytes, as well as to upregulate AMPK phosphorylation, glycogenolysis, and cAMP levels in hepatocytes. As a consequence, the acute effects of rimonabant on hepatic glycogen content (reduction) and total energy expenditure (increase) in rats fed with a standard diet cannot be explained by direct stimulation of glycogenolysis and fatty acid oxidation in muscles and liver. Rather, these effects seem to be centrally mediated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ACC:

acetyl-CoA carboxylase

AGRP:

agouti-related peptide

AICAR:

5-aminoimidazole-4-carboxamide ribonucleotide

AMPK:

adenosine monophosphate-dependent protein kinase

CART:

cocaine- and amphetamine-regulated transcript

CB1R:

cannabinoid type 1 receptor

CCK:

cholecystokinin

EBSS:

Earl’s balanced salt solution

(F)FA:

(free) fatty acid

Glut4:

glucose transport isoform 4

HBSS:

Hank’s balanced salt solution

IBMX:

3-isobutyl-1-methylxanthine

MCH:

melanin-concentrating hormone

NPY:

neuropeptide Y

PKA:

protein kinase A

POMC:

proopiomelanocortin.

References

  1. Sack, N., Hutcheson, J. R., Watts, J. M., and Webb, R. E. (1990) Case report: the effect of tetrahydrocannabinol on food intake during chemotherapy, J. Am. Coll. Nutr., 9, 630–632.

    Article  Google Scholar 

  2. Di Marzo, V., Goparaju, S. K., Wang, L., Liu, J., Batkai, S., Jarai, Z., Fezza, F., Miura, G. I., and Palmiter, R. D. (2001) Leptin-regulated endocannabinoids are involved in maintaining food intake, Nature, 410, 822–825.

    Article  Google Scholar 

  3. Di Marzo, V., and Matias, I. (2005) Endocannabinoid control of food intake and energy balance, Nat. Neurosci., 8, 585–589.

    Article  CAS  PubMed  Google Scholar 

  4. Cohen, K., Weizman, A., and Weinstein, A. (2019) Positive and negative effects of cannabis and cannabinoids on health, Clin. Pharmacol. Ther., 105, 1139–1147, doi: 10.1002/cpt.1381.

    Article  PubMed  Google Scholar 

  5. Benardis, L. L., and Bellinger, L. L. (1996) The lateral hypothalamic area revisited: ingestive behavior, Neurosci. Biobehav. Rev., 20, 189–287.

    Article  Google Scholar 

  6. Spiegelman, B. M., and Flier, J. S. (2001) Obesity and the regulation of energy balance, Cell, 104, 531–543.

    Article  CAS  PubMed  Google Scholar 

  7. Barsh, G. S., and Schwartz, M. W. (2002) Genetic approaches to studying energy balance, Nat. Rev. Genet., 3, 589–600.

    Article  CAS  PubMed  Google Scholar 

  8. Hilairet, S., Bouaboula, M., Carriere, D., Le Fur, G., and Casellas, P. (2003) Hypersensitization of the orexin 1 receptor by the CB1 receptor: evidence for cross-talk blocked by the specific CB1 antagonist, SR141716, J. Biol. Chem., 278, 23731–23737.

    Google Scholar 

  9. Rinaldi-Carmona, M., Barth, F., Heaulme, M., Alonso, R., Shire, D., Congy, C., Soubrie, P., Breliere, J. C., and Le Fur, G. (1995) Biochemical and pharmacological characterization of SR141716, the first potent and selective brain cannabinoid receptor antagonist, Life Sci., 56, 1941–1947.

    Article  CAS  PubMed  Google Scholar 

  10. Van Gaal, L. F., Rissanen, A. M., Scheen, A. J., Ziegler, O., and Rossner, S. (2005) Effects of the cannabinoid-1 receptor blocker rimonabant on weight reduction and cardiovascular risk factors in overweight patients: 1-year experience from the RIO-Europe study, Lancet, 365, 1389–1397.

    Article  CAS  Google Scholar 

  11. Ravinet, T. C., Delgorge, C., Menet, C., Arnone, M., and Soubrie, P. (2004) CB1 cannabinoid receptor knockout in mice leads to leanness, resistance to diet-induced obesity and enhanced leptin sensitivity, Int. J. Obes. Relat. Metab. Disord., 28, 640–648.

    Article  CAS  Google Scholar 

  12. Gomez, R., Navarro, M., Ferrer, B., Trigo, J. M., Bilbao, A., Del, A., Cippitelli, A., Nava, F., Piomelli, D., and Rodriguez, D. F. (2002) A peripheral mechanism for CB1 cannabinoid receptor-dependent modulation of feeding, J. Neurosci., 22, 9612–9617.

    Article  CAS  PubMed  Google Scholar 

  13. Freedland, C. S., Poston, J. S., and Porrino, L. J. (2000) Effects of SR141716A, a central cannabinoid receptor antagonist, on food-maintained responding, Pharmacol. Biochem. Behav., 67, 265–270.

    Article  CAS  PubMed  Google Scholar 

  14. Jbilo, O., Ravinet-Trillou, C., Arnone, M., Buisson, I., Bribes, E., Peleraux, A., Penarier, G., Soubrie, P., Le Fur, G., Galiegue, S., and Casellas, P. (2005) The CB1 receptor antagonist rimonabant reverses the diet-induced obesity phenotype through the regulation of lipolysis and energy balance, FASEB J., 19, 1567–1569.

    Article  CAS  PubMed  Google Scholar 

  15. Ravinet, T. C., Arnone, M., Delgorge, C., Gonalons, N., Keane, P., Maffrand, J. P., and Soubrie, P. (2003) Anti-obesity effect of SR141716, a CB1 receptor antagonist, in diet-induced obese mice, Am. J. Physiol. Regul. Integr. Comp. Physiol., 284, R345–353.

    Article  Google Scholar 

  16. Seglen, P. O. (1976) Preparation of isolated rat liver cells, Methods Cell Biol., 13, 29–83.

    Article  CAS  PubMed  Google Scholar 

  17. Kreamer, B. L., Steacker, J. L., Sawada, N., Sattler, G. L., Hsia, M. T., and Pitot, H. C. (1986) Use of a low-speed, iso-density Percoll centrifugation method to increase the viability of isolated rat hepatocyte preparations, In Vitro Cell Dev. Biol., 22, 201–211.

    Article  CAS  PubMed  Google Scholar 

  18. Minnich, A., Tian, N., Byan, L., and Bilder, G. (2001) A potent PPARalpha agonist stimulates mitochondrial fatty acid beta-oxidation in liver and skeletal muscle, Am. J. Physiol. Endocrinol. Metab., 280, E270–279.

    Article  CAS  PubMed  Google Scholar 

  19. Schmoll, D., Fuhrmann, E., Gebhardt, R., and Hamprecht, B. (1995) Significant amounts of glycogen are synthesized from 3-carbon compounds in astroglial primary cultures from mice with participation of the mitochondrial phosphoenolpyruvate carboxy kinase isoenzyme, Eur. J. Biochem., 227, 308–315.

    Article  CAS  PubMed  Google Scholar 

  20. Muller, G., Jung, C., Wied, S., Welte, S., and Frick, W. (2001) Insulin-mimetic signaling by the sulfonylurea glimepiride and phosphoinositolglycans involves distinct mechanisms for redistribution of lipid raft components, Biochemistry, 40, 14603–14620.

    Article  CAS  PubMed  Google Scholar 

  21. Kahn, B. B., Alquier, T., Carling, D., and Hardie, D. G. (2005) AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism, Cell Metab., 1, 15–25.

    Article  CAS  PubMed  Google Scholar 

  22. Kola, B., Hubina, E., Tucci, S. A., Kirkham, T. C., Garcia, E. A., Mitchell, S. E., Williams, L. M., Hawley, S. A., Hardie, D. G., Grossman, A. B., and Korbonits, M. (2005) Cannabinoids and ghrelin have both central and peripheral metabolic and cardiac effects via AMP-activated protein kinase, J. Biol. Chem., 280, 25196–25201.

    Article  CAS  PubMed  Google Scholar 

  23. Müller, G. A., Herling, A. W., and Wied, S. (2019) Upregulation of phosphorylation of lipid droplet-associated proteins in primary rat adipocytes by the cannabinoid receptor 1 antagonist rimonabant, Arch. Physiol. Biochem., in press.

    Google Scholar 

  24. Osei-Hyiaman, D., DePetrillo, M., Pacher, P., Liu, J., Radaeva, S., Batkai, S., Harvey-White, J., Mackie, K., Offertaler, L., Wang, L., and Kunos, G. (2005) Endocannabinoid activation at hepatic CB1 receptors stimulates fatty acid synthesis and contributes to diet-induced obesity, J. Clin. Invest., 115, 1298–1305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bensaid, M., Gary-Bobo, M., Esclangon, A., Maffrand, J. P., Le Fur, G., Oury-Donat, F., and Soubrie, P. (2003) The cannabinoid CB1 receptor antagonist SR141716 increases Acrp30 mRNA expression in adipose tissue of obese fa/fa rats and in cultured adipocyte cells, Mol. Pharmacol., 63, 908–914.

    Article  CAS  PubMed  Google Scholar 

  26. Brown, D. A. (2001) Lipid droplets: proteins floating on a pool of fat, Curr. Biol., 11, R446–R449.

    Article  CAS  PubMed  Google Scholar 

  27. Blanchette-Mackie, E. J., Dwyer, N. K., Barber, T., Coxey, R. A., Takeda, T., Rondinone, C. M., Theodorakis, J. L., Greenberg, A. S., and Londos, C. (1995) Perilipin is located on the surface layer of intracellular lipid droplets in adipocytes, J. Lipid Res., 36, 1211–1226.

    CAS  PubMed  Google Scholar 

  28. Yeaman, S. J. (2004) Hormone-sensitive lipase — new roles for an old enzyme, Biochem. J., 379, 11–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Herling, A. W., Kilp, S., Juretschke, H. P., Neumann-Haefelin, C., Gerl, M., and Kramer, W. (2008) Reversal of visceral adiposity in candy-diet fed female Wistar rats by the CB1 receptor antagonist rimonabant, Int. J. Obes., 32, 1363–1372.

    Article  CAS  Google Scholar 

  30. Lu, Y., and Anderson, H. D. (2017) Cannabinoid signaling in health and disease, Can. J. Physiol. Pharmacol., 95, 311–327.

    Article  CAS  PubMed  Google Scholar 

  31. Simon, V., and Cota, D. (2017) Mechanisms in endocrinology: endocannabinoids and metabolism: past, present and future, Eur. J. Endocrinol., 176, R309–R324.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Müller.

Ethics declarations

Conflict of interest. The authors declare no conflict of interest neither in financial nor in any other area.

Compliance with ethical standards. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM19-029, July 15, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Müller, G.A., Wied, S. & Herling, A.W. Analysis of Direct Effects of the CB1 Receptor Antagonist Rimonabant on Fatty Acid Oxidation and Glycogenolysis in Liver and Muscle Cells in vitro. Biochemistry Moscow 84, 954–962 (2019). https://doi.org/10.1134/S000629791908011X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629791908011X

Keywords

Navigation