Skip to main content
Log in

Comparison of the Size and Properties of the Cytochrome c/Cardiolipin Nanospheres in a Sediment and Non-polar Medium

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Apoptosis, as the major type of programmed cell death, plays an important role in the organism renewal and removal of defective and transformed cells, including cancer cells. One of the earliest apoptotic events is lipid peroxidation in the inner mitochondrial membrane catalyzed by a complex of cytochrome c (CytC) with the mitochondrial phospholipid cardiolipin (CL). It was shown that mixing CytC and CL solutions results in the formation of CytC/CL complexes (Cyt-CL nanospheres) with a diameter of 11–12 nm composed of the molten globule protein molecule and a CL monolayer. Using the methods of dynamic light scattering for the Cyt-CL chloroform solution and small-angle X-ray scattering for the Cyt-CL sediment, it was found that in both cases, Cyt-CL formed nanospheres with a diameter of 8 and 11 nm, which corresponded to the earlier determined lipid/protein ratios of 13–14 and 35–50, respectively. These results showed that the Cyt-CL nanospheres can form not only during crystallization but also in a hydrophobic medium. CytC in the complex exists as a molten globule, as evidenced by the emergence of tryptophan and tyrosine fluorescence (absent in the native protein) due to the Förster resonance transfer of the electron excitation energy onto the heme. At the same time, the coordinate bond between the heme iron and the sulfur atom of methionine 80 in Cyt-CL is disrupted (the absorption band at ~700 nm disappears). Similar disruption of the iron-sulfur bond in Cyt-CL was observed in 50% methanol. These changes were reversible, which corroborates the conclusion on the CytC transition to the molten globule conformation in methanol-containing solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

>Fe3+-S(Met80):

iron-sulfur bond between cytochrome c heme iron and methionine 80 sulfur atom

CL:

cardiolipin

CytC:

cytochrome c

Cyt-CL:

cytochrome c/cardiolipin complex

DLS:

dynamic light scattering

SAXS:

small angle X-ray scattering

TOCL:

1,1′,2,2′-tetraoleyl cardiolipin

References

  1. Ouyang, L., Shi, Z., Zhao, S., Wang, F. T., Zhou, T. T., Liu, B., and Bao, J. K. (2012) Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis, Cell Prolif., 45, 487–498, doi: https://doi.org/10.1111/j.1365-2184.2012.00845.x.

    Article  CAS  PubMed  Google Scholar 

  2. Saleem, M., Asif, J., Asif, M., and Saleem, U. (2018) Amygdalin, from apricot kernels, induces apoptosis and causes cell cycle arrest in cancer cells: an updated review, Anticancer Agents Med. Chem., 18, 1650–1655, doi: https://doi.org/10.2174/1871520618666180105161136.

    Article  CAS  PubMed  Google Scholar 

  3. Kagan, V. E., Borisenko, G. G., Tyurina, Y. Y., Tyurin, V. A., Jiang, J., Potapovich, A. I., Kini, V., Amoscato, A. A., and Fujii, Y. (2004) Oxidative lipidomics of apoptosis: redox catalytic interactions of cytochrome c with cardiolipin and phosphatidylserine, Free Radic. Biol. Med., 37, 1963–1985, doi: https://doi.org/10.1016/j.freeradbiomed.2004.08.016.

    Article  CAS  PubMed  Google Scholar 

  4. Kagan, V. E., Tyurin, V. A., Jiang, J., Tyurina, Y. Y., Ritov, V. B., Amoscato, A. A., Osipov, A. N., Belikova, N. A., Kapralov, A. A., and Kini, V. (2005) Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors, Nature Chem. Biol., 1, 223–232, doi: https://doi.org/10.1038/nchembio727.i.

    Article  CAS  Google Scholar 

  5. Kagan, V. E., Bayir, A., Bayir, H., Stoyanovsky, D., Borisenko, G. G., Tyurina, Y. Y., Wipf, P., Atkinson, J., Greenberger, J. S., Chapkin, R. S., and Belikova, N. A. (2009) Mitochondria-targeted disruptors and inhibitors of cytochrome c/cardiolipin peroxidase complexes: a new strategy in anti-apoptotic drug discovery, Mol. Nutr. Food Res., 53, 104–114, doi: https://doi.org/10.1002/mnfr.200700402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Brown, L. R., and Wuthrich, K. (1977) NMR and ESR studies of the interactions of cytochrome c with mixed cardiolipin-phosphatidylcholine vesicles, Biochim. Biophys. Acta, 468, 389–410, doi: https://doi.org/10.1016/0005-2736(77)90290-5.

    Article  CAS  PubMed  Google Scholar 

  7. Sinibaldi, F., Howes, B. D., Piro, M. C., Polticelli, F., Bombelli, C., Ferri, T., Coletta, M., Smulevich, G., and Santucci, R. (2010) Extended cardiolipin anchorage to cytochrome c: a model for protein-mitochondrial membrane binding, J. Biol. Inorg. Chem., 15, 689–700, doi: https://doi.org/10.1007/s00775-010-0636-z.

    Article  CAS  PubMed  Google Scholar 

  8. Mandal, A., Hoop, C. L., DeLucia, M., Kodali, R., Kagan, V. E., Ahn, J., and van der Wel, P. C. (2015) Structural changes and proapoptotic peroxidase activity of cardiolipin-bound mitochondrial cytochrome c, Biophys. J., 109, 1873–1884, doi: https://doi.org/10.1016/j.bpj.2015.09.016.

    CAS  Google Scholar 

  9. Hanske, J., Toffey, J. R., Morenz, A. M., Bonilla, A. J., Schiavoni, K. H., and Pletneva, E. V. (2012) Conformational properties of cardiolipin-bound cytochrome c, Proc. Natl. Acad. Sci. USA, 109, 125–130, doi: https://doi.org/10.1073/pnas.1112312108.

    Article  PubMed  Google Scholar 

  10. Kagan, V. E., Bayir, H. A., Belikova, N. A., Kapralov, O., Tyurina, Y. Y., Tyurin, V. A., Jiang, J., Stoyanovsky, D. A., Wipf, P., Kochanek, P. M., Greenberger, J. S., Pitt, B., Shvedova, A. A., and Borisenko, G. (2009) Cytochrome c/cardiolipin relations in mitochondria: a kiss of death, Free Rad. Biol. Med., 46, 1439–1453, doi: https://doi.org/10.1016/j.freeradbiomed.2009.03.004.

    Article  CAS  PubMed  Google Scholar 

  11. Vladimirov, Y. A., Proskurnina, E. V., and Alekseev, A. V. (2013) Molecular mechanisms of apoptosis. Structure of cytochrome c-cardiolipin complex, Biochemistry (Moscow), 78, 1086–1097, doi: https://doi.org/10.1134/S0006297913100027.

    Article  CAS  Google Scholar 

  12. Jemmerson, R., Liu, J., Hausauer, D., Lam, K. P., Mondino, A., and Nelson, R. D. (1999) A conformational change in cytochrome c of apoptotic and necrotic cells is detected by monoclonal antibody binding and mimicked by association of the native antigen with synthetic phospholipid vesicles, Biochemistry, 38, 3599–3609, doi: https://doi.org/10.1021/bi9809268.

    Article  CAS  PubMed  Google Scholar 

  13. Tuominen, E. K., Zhu, K., Wallace, C. J., Clark-Lewis, I., Craig, D. B., Rytomaa, M., and Kinnunen, P. K. (2001) ATP induces a conformational change in lipid-bound cytochrome c, J. Biol. Chem., 276, 19356–19362, doi: https://doi.org/10.1074/jbc.M100853200.

    Article  CAS  PubMed  Google Scholar 

  14. Balakrishnan, G., Hu, Y., Oyerinde, O. F., Su, J., Groves, J. T., and Spiro, T. G. (2007) A conformational switch to beta-sheet structure in cytochrome c leads to heme exposure. Implications for cardiolipin peroxidation and apoptosis, J. Amer. Chem. Soc., 129, 504–505, doi: https://doi.org/10.1021/ja0678727.

    Article  CAS  Google Scholar 

  15. Hong, Y., Muenzner, J., Grimm, S. K., and Pletneva, E. V. (2012) Origin of the conformational heterogeneity of cardiolipin-bound cytochrome c, J. Amer. Chem. Soc., 134, 18713–18723, doi: https://doi.org/10.1021/ja307426k.

    Article  CAS  Google Scholar 

  16. Vladimirov, Y. A., Nol’, Y. T., and Volkov, V. V. (2011) Protein-lipid nanoparticles that determine whether cells will live or die, Crystallogr. Rep., 56, 553–559, doi: https://doi.org/10.1134/S1063774511040250.

    Article  CAS  Google Scholar 

  17. Kapralov, A. A., Yanamala, N., Tyurina, Y. Y., Castro, L., Samhan-Arias, A., Vladimirov, Y. A., Maeda, A., Weitz, A.A., Peterson, J., Mylnikov, D., Demicheli, V., Tortora, V., Klein-Seetharaman, J., Radi, R., and Kagan, V. E. (2011) Topography of tyrosine residues and their involvement in peroxidation of polyunsaturated cardiolipin in cytochrome c/cardiolipin peroxidase complexes, Biochim. Biophys. Acta, 1808, 2147–2155, doi: https://doi.org/10.1016/j.bbamem.2011.04.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Belikova, N. A., Vladimirov, Y. A., Osipov, A. N., Kapralov, A. A., Tyurin, V. A., Potapovich, M. V., Basova, L. V., Peterson, J., Kurnikov, I. V., and Kagan, V. E. (2006) Peroxidase activity and structural transitions of cytochrome c bound to cardiolipin-containing membranes, Biochemistry, 45, 4998–5009, doi: https://doi.org/10.1021/bi0525573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kapralov, A. A., Kurnikov, I. V., Vlasova, I. I., Belikova, N. A., Tyurin, V. A., Basova, L. V., Zhao, Q., Tyurina, Y. Y., Jiang, J., Bayir, H., Vladimirov, Y. A., and Kagan, V. E. (2007) The hierarchy of structural transitions induced in cytochrome c by anionic phospholipids determines its peroxidase activation and selective peroxidation during apoptosis in cells, Biochemistry, 46, 14232–14244, doi: https://doi.org/10.1021/bi701237b.

    Article  CAS  PubMed  Google Scholar 

  20. Proskurnina, E. V., Alekseev, A. V., Demin, E. M., Izmailov, D. Y., and Vladimirov, Y. A. (2013) Cyt-CL complex: peroxidase activity and role in lipid peroxidation, FEBS J., 280, 264–264.

    Google Scholar 

  21. Vladimirov, G. K., Vikulina, A. S., Volodkin, D., and Vladimirov, Y. A. (2018) Structure of the complex of cytochrome c with cardiolipin in non-polar environment, Chem. Phys. Lipids, 214, 35–45, doi: https://doi.org/10.1016/j.chemphyslip.2018.05.007.

    Article  CAS  PubMed  Google Scholar 

  22. Konarev, P. V., Volkov, V. V., Sokolova, A. V., Koch, M. H. J., and Svergun, D. I. (2003) PRIMUS: a Windows PC-based system for small-angle scattering data analysis, J. Appl. Crystallogr., 36, 1277–1282, doi: https://doi.org/10.1107/S002188980301277923.

    Article  CAS  Google Scholar 

  23. Folch, J., Lees, M., and Sloane Stanley, G. H. (1957) A simple method for the isolation and purification of total lipids from animal tissues, J. Biol. Chem., 226, 497–509

    CAS  PubMed  Google Scholar 

  24. Vikulina, A. S., Alekseev, A. V., Proskurnina, E. V., and Vladimirov, Y. A. (2015) The complex of cytochrome c with cardiolipin in non-polar environment, Biochemistry (Moscow), 80, 1298–1302, doi: https://doi.org/10.1134/S0006297915100107.

    Article  CAS  Google Scholar 

  25. Ali, S., Farooqi, H., Prasad, R., Naime, M., Routray, I., Yadav, S., and Ahmad, F. (2010) Boron stabilizes peroxide mediated changes in the structure of heme proteins, Int. J. Biol. Macromol., 47, 109–115, doi: https://doi.org/10.1016/j.ijbiomac.2010.05.013.

    Article  CAS  PubMed  Google Scholar 

  26. Kobayashi, H., Nagao, S., and Hirota, S. (2016) Characterization of the cytochrome c membrane-binding site using cardiolipin-containing bicelles with NMR, Angewandte Chem. Int. Ed., 55, 14019–14022, doi: https://doi.org/10.1002/anie.201607419.

    Article  CAS  Google Scholar 

  27. Proskurnina, E. V., Proskurnin, M. A., Alekseev, A. V., Galimova, V. R., and Vladimirov, Yu. A. (2018) Determination of a composition of cytochrome c/cardiolipin complex by spectrophotometry and thermal-lens spectrometry, Tekhnol. Zhivykh Sistem, 15, 27–33.

    Google Scholar 

  28. Sinibaldi, F., Howes, B. D., Droghetti, E., Polticelli, F., Piro, M. C., Di Pierro, D., Fiorucci, L., Coletta, M., Smulevich, G., and Santucci, R. (2013) Role of lysins in cytochrome c-cardiolipin interaction, Biochemistry, 52, 4578–4588, doi: https://doi.org/10.1021/bi400324c.

    Article  CAS  PubMed  Google Scholar 

  29. Kitt, J. P., Bryce, D. A., Minteer, S. D., and Harris, J. M. (2017) Raman spectroscopy reveals selective interactions of cytochrome c with cardiolipin that correlate with membrane permeability, J. Am. Chem. Soc., 139, 3851–3860, doi: https://doi.org/10.1021/jacs.7b00238.

    Article  CAS  PubMed  Google Scholar 

  30. Miyamoto, S., Nantes, I. L., Faria, P. A., Cunha, D., Ronsein, G. E., Medeiros, M. H., and Di Mascio, P. (2012) Cytochrome c-promoted cardiolipin oxidation generates singlet molecular oxygen, Photochem. Photobiol. Sci., 11, 1536–1546, doi: https://doi.org/10.1039/c2pp25119a.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Funding. This work was supported by the Russian Foundation for Basic Research (project 17-74-10248), the Ministry of Science and Higher Education within the framework of the State Budget Project for the Crystallography and Photonics Federal Scientific Research Center (development of software for analysis of SAXS data), and the ESRF BAG MX-2079 project (registration of SAXS on the BioSAXS BM29 station). The study used the equipment of the Multi-access Computing Center of the Crystallography and Photonics Federal Scientific Research Centre, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. K. Vladimirov.

Ethics declarations

Conflict of interest. The authors declare no conflict of interest in financial or any other sphere.

Ethical approval. This article contains no studies with human participants or animals performed by any of the authors.

Additional information

Russian Text © The Author(s), 2019, published in Biokhimiya, 2019, Vol. 84, No. 8, pp. 1167–1176.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vladimirov, G.K., Remenshchikov, V.E., Nesterova, A.M. et al. Comparison of the Size and Properties of the Cytochrome c/Cardiolipin Nanospheres in a Sediment and Non-polar Medium. Biochemistry Moscow 84, 923–930 (2019). https://doi.org/10.1134/S000629791908008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629791908008X

Keywords

Navigation