Skip to main content
Log in

RNA Editing by ADAR Adenosine Deaminases: From Molecular Plasticity of Neural Proteins to the Mechanisms of Human Cancer

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

RNA editing by adenosine deaminases of the ADAR family attracts a growing interest of researchers, both zoologists studying ecological and evolutionary plasticity of invertebrates and medical biochemists focusing on the mechanisms of cancer and other human diseases. These enzymes deaminate adenosine residues in the double-stranded (ds) regions of RNA with the formation of inosine. As a result, some RNAs change their three-dimensional structure and functions. Adenosine-to-inosine editing in the mRNA coding sequences may cause amino acid substitutions in the encoded proteins. Here, we reviewed current concepts on the functions of two active ADAR isoforms identified in mammals (including humans). The ADAR1 protein, which acts non-specifically on extended dsRNA regions, is capable of immunosuppression via inactivation of the dsRNA interactions with specific sensors inducing the cell immunity. Expression of a specific ADAR1 splicing variant is regulated by the type I interferons by the negative feedback mechanism. It was shown that immunosuppressing effects of ADAR1 facilitate progression of some types of cancer. On the other hand, changes in the amino acid sequences resulting from the mRNA editing by the ADAR enzymes can result in the formation of neoantigens that can activate the antitumor immunity. The ADAR2 isoform acts on RNA more selectively; its function is associated with the editing of mRNA coding regions and can lead to the amino acid substitutions, in particular, those essential for the proper functioning of some neurotransmitter receptors in the central nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ADAR:

adenosine deaminase, RNA-dependent

dsRNA:

double-stranded RNA

PKR:

protein kinase R

References

  1. Lobas, A. A., Pyatnitskiy, M. A., Chernobrovkin, A. L., Ilina, I. Y., Karpov, D. S., Solovyeva, E. M., Kuznetsova, K. G., Ivanov, M. V., Lyssuk, E. Y., Kliuchnikova, A. A., Voronko, O. E., Larin, S. S., Zubarev, R. A., Gorshkov, M. V., and Moshkovskii, S. A. (2018) Proteogenomics of malignant melanoma cell lines: the effect of stringency of exome data filtering on variant peptide identification in shotgun proteomics, J. Proteome Res., 17, 1801–1811, doi: https://doi.org/10.1021/acs.jproteome.7b00841.

    Article  CAS  PubMed  Google Scholar 

  2. Kuznetsova, K. G., Kliuchnikova, A. A., Ilina, I. U., Chernobrovkin, A. L., Novikova, S. E., Farafonova, T. E., Karpov, D. S., Ivanov, M. V., Goncharov, A. O., Ilgisonis, E. V., Voronko, O. E., Nasaev, S. S., Zgoda, V. G., Zubarev, R. A., Gorshkov, M. V., and Moshkovskii, S. A. (2018) Proteogenomics of adenosine-to-inosine RNA editing in the fruit fly, J. Proteome Res., 17, 3889–3903, doi: https://doi.org/10.1021/acs.jproteome.8b00553.

    Article  CAS  PubMed  Google Scholar 

  3. Ishizuka, J. J., Manguso, R. T., Cheruiyot, C. K., Bi, K., Panda, A., Iracheta-Vellve, A., Miller, B. C., Du, P. P., Yates, K. B., Dubrot, J., Buchumenski, I., Comstock, D. E., Brown, F. D., Ayer, A., Kohnle, I. C., Pope, H. W., Zimmer, M. D., Sen, D. R., Lane-Reticker, S. K., Robitschek, E. J., Griffin, G. K., Collins, N. B., Long, A. H., Doench, J. G., Kozono, D., Levanon, E. Y., and Haining, W. N. (2019) Loss of ADAR1 in tumours overcomes resistance to immune checkpoint blockade, Nature, 565, 43–48, doi: https://doi.org/10.1038/s41586-018-0768-9.

    Article  CAS  PubMed  Google Scholar 

  4. Orecchini, E., Doria, M., Antonioni, A., Galardi, S., Ciafre, S. A., Frassinelli, L., Mancone, C., Montaldo, C., Tripodi, M., and Michienzi, A. (2017) ADAR1 restricts LINE-1 retrotransposition, Nucleic Acids Res., 45, 155–168, doi: https://doi.org/10.1093/nar/gkw834.

    Article  CAS  PubMed  Google Scholar 

  5. Bass, B. L. (2002) RNA editing by adenosine deaminases that act on RNA, Annu. Rev. Biochem., 71, 817–846, doi: https://doi.org/10.1146/annurev.biochem.71.110601.135501.

    Article  CAS  PubMed  Google Scholar 

  6. Hough, R. F., and Bass, B. L. (1994) Purification of the Xenopus laevis double-stranded RNA adenosine deaminase, J. Biol. Chem., 269, 9933–9939.

    CAS  PubMed  Google Scholar 

  7. Jin, Y., Zhang, W., and Li, Q. (2009) Origins and evolution of ADAR-mediated RNA editing, IUBMB Life, 61, 572–578, doi: https://doi.org/10.1002/iub.207.

    Article  CAS  PubMed  Google Scholar 

  8. Palladino, M. J., Keegan, L. P., O’Connell, M. A., and Reenan, R. A. (2000) dADAR, a Drosophila double-stranded RNA-specific adenosine deaminase is highly developmentally regulated and is itself a target for RNA editing, RNA, 6, 1004–1018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Melcher, T., Maas, S., Herb, A., Sprengel, R., Higuchi, M., and Seeburg, P. H. (1996) RED2, a brain-specific member of the RNA-specific adenosine deaminase family, J. Biol. Chem., 271, 31795–31798.

    Article  CAS  PubMed  Google Scholar 

  10. Oakes, E., Anderson, A., Cohen-Gadol, A., and Hundley, H. A. (2017) Adenosine deaminase that acts on RNA 3 (ADAR3) binding to glutamate receptor subunit B pre-mRNA inhibits RNA editing in glioblastoma, J. Biol. Chem., 292, 4326–4335, doi: https://doi.org/10.1074/jbc.M117.779868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schumacher, J. M., Lee, K., Edelhoff, S., and Braun, R. E. (1995) Distribution of Tenr, an RNA-binding protein, in a lattice-like network within the spermatid nucleus in the mouse, Biol. Reprod., 52, 1274–1283.

    Article  CAS  PubMed  Google Scholar 

  12. Saunders, L. R., and Barber, G. N. (2003) The dsRNA binding protein family: critical roles, diverse cellular functions, FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol., 17, 961–983, doi: https://doi.org/10.1096/fj.02-0958rev.

    CAS  Google Scholar 

  13. Herbert, A., Alfken, J., Kim, Y. G., Mian, I. S., Nishikura, K., and Rich, A. (1997 A Z-DNA binding domain present in the human editing enzyme, double-stranded RNA adenosine deaminase, Proc. Natl. Acad. Sci. USA, 94, 8421–8426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nishikura, K., Yoo, C., Kim, U., Murray, J. M., Estes, P. A., Cash, F. E., and Liebhaber, S. A. (1991) Substrate specificity of the dsRNA unwinding/modifying activity, EMBO J., 10, 3523–3532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bass, B. L., and Weintraub, H. (1988) An unwinding activity that covalently modifies its double-stranded RNA substrate, Cell, 55, 1089–1098.

    Article  CAS  PubMed  Google Scholar 

  16. Licht, K., Janisiw, M. P., Jantsch, M. F., Anrather, D., Hartl, M., and Amman, F. (2018) Inosine induces context-dependent recoding and translational stalling, Nucleic Acids Res., 47, 3–14, doi: https://doi.org/10.1093/nar/gky1163.

    Article  CAS  PubMed Central  Google Scholar 

  17. Levanon, E. Y., Eisenberg, E., Yelin, R., Nemzer, S., Hallegger, M., Shemesh, R., Fligelman, Z. Y., Shoshan, A., Pollock, S. R., Sztybel, D., Olshansky, M., Rechavi, G., and Jantsch, M. F. (2004) Systematic identification of abundant A-to-I editing sites in the human transcriptome, Nat. Biotechnol., 22, 1001–1005, doi: https://doi.org/10.1038/nbt996.

    Article  CAS  PubMed  Google Scholar 

  18. Kim, D. D. Y., Kim, T. T. Y., Walsh, T., Kobayashi, Y., Matise, T. C., Buyske, S., and Gabriel, A. (2004) Widespread RNA editing of embedded alu elements in the human transcriptome, Genome Res., 14, 1719–1725, doi: https://doi.org/10.1101/gr.2855504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Athanasiadis, A., Rich, A., and Maas, S. (2004) Wide-spread A-to-I RNA editing of Alu-containing mRNAs in the human transcriptome, PLoS Biol., 2, e391, doi: https://doi.org/10.1371/journal.pbio.0020391.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Blow, M., Futreal, P. A., Wooster, R., and Stratton, M. R. (2004) A survey of RNA editing in human brain, Genome Res., 14, 2379–2387, doi: https://doi.org/10.1101/gr.2951204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Eisenberg, E., Nemzer, S., Kinar, Y., Sorek, R., Rechavi, G., and Levanon, E. Y. (2005) Is abundant A-to-I RNA editing primate-specific?, Trends Genet., 21, 77–81, doi: https://doi.org/10.1016/j.tig.2004.12.005..

    Article  CAS  PubMed  Google Scholar 

  22. Shen, M. R., Batzer, M. A., and Deininger, P. L. (1991) Evolution of the master Alu gene(s), J. Mol. Evol., 33, 311–320.

    Article  CAS  PubMed  Google Scholar 

  23. Garcia, M. A., Gil, J., Ventoso, I., Guerra, S., Domingo, E., Rivas, C., and Esteban, M. (2006) Impact of protein kinase PKR in cell biology: from antiviral to antiproliferative action, Microbiol. Mol. Biol. Rev., 70, 1032–1060, doi: https://doi.org/10.1128/MMBR.00027-06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang, J.-H., Nie, Y., Zhao, Q., Su, Y., Pypaert, M., Su, H., and Rabinovici, R. (2003) Intracellular localization of differentially regulated RNA-specific adenosine deaminase isoforms in inflammation, J. Biol. Chem., 278, 45833–45842, doi: https://doi.org/10.1074/jbc.M308612200.

    Article  CAS  PubMed  Google Scholar 

  25. Clerzius, G., Gelinas, J.-F., Daher, A., Bonnet, M., Meurs, E. F., and Gatignol, A. (2009) ADAR1 interacts with PKR during human immunodeficiency virus infection of lymphocytes and contributes to viral replication, J. Virol., 83, 10119–10128, doi: https://doi.org/10.1128/JVI.02457-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Porath, H. T., Knisbacher, B. A., Eisenberg, E., and Levanon, E. Y. (2017) Massive A-to-I RNA editing is common across the Metazoa and correlates with dsRNA abundance, Genome Biol., 18, 185, doi: https://doi.org/10.1186/s13059-017-1315-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pestal, K., Funk, C. C., Snyder, J. M., Price, N. D., Treuting, P. M., and Stetson, D. B. (2015) Isoforms of RNA-editing enzyme ADAR1 independently control nucleic acid sensor MDA5-driven autoimmunity and multi-organ development, Immunity, 43, 933–944, doi: https://doi.org/10.1016/j.immuni.2015.11.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mannion, N. M., Greenwood, S. M., Young, R., Cox, S., Brindle, J., Read, D., Nellaker, C., Vesely, C., Ponting, C. P., McLaughlin, P. J., Jantsch, M. F., Dorin, J., Adams, I. R., Scadden, A. D. J., Ohman, M., Keegan, L. P., and O’Connell, M. A. (2014) The RNA-editing enzyme ADAR1 controls innate immune responses to RNA, Cell Rep., 9, 1482–1494, doi: https://doi.org/10.1016/j.celrep.2014.10.041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Amberger, J. S., Bocchini, C. A., Schiettecatte, F., Scott, A. F., and Hamosh, A. (2015) OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders, Nucleic Acids Res., 43, D789–D798, doi: https://doi.org/10.1093/nar/gku1205.

    Article  CAS  PubMed  Google Scholar 

  30. Rice, G. I., Kasher, P. R., Forte, G. M. A., Mannion, N. M., Greenwood, S. M., Szynkiewicz, M., Dickerson, J. E., Bhaskar, S. S., Zampini, M., Briggs, T. A., Jenkinson, E. M., Bacino, C. A., Battini, R., Bertini, E., Brogan, P. A., Brueton, L. A., Carpanelli, M., De Laet, C., de Lonlay, P., del Toro, M., Desguerre, I., Fazzi, E., Garcia-Cazorla, A., Heiberg, A., Kawaguchi, M., Kumar, R., Lin, J. P., Lourenco, C. M., Male, A. M., Marques, W., Jr., Mignot, C., Olivieri, I., Orcesi, S., Prabhakar, P., Rasmussen, M., Robinson, R. A., Rozenberg, F., Schmidt, J. L., Steindl, K., Tan, T. Y., van der Merwe, W. G., Vanderver, A., Vassallo, G., Wakeling, E. L., Wassmer, E., Whittaker, E., Livingston, J. H., Lebon, P., Suzuki, T., McLaughlin, P. J., Keegan, L. P., O’Connell, M. A., Lovell, S. C., and Crow, Y. J. (2012) Mutations in ADAR1 cause Aicardi-Goutieres syndrome associated with a type I interferon signature, Nat. Genet., 44, 1243–1248, doi: https://doi.org/10.1038/ng.2414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Miyamura, Y., Suzuki, T., Kono, M., Inagaki, K., Ito, S., Suzuki, N., and Tomita, Y. (2003) Mutations of the RNA-specific adenosine deaminase gene (DSRAD) are involved in dyschromatosis symmetrica hereditaria, Am. J. Hum. Genet., 73, 693–699, doi: https://doi.org/10.1086/378209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Samuel, C. E. (2011) Adenosine deaminases acting on RNA (ADARs) are both antiviral and proviral, Virology, 411, 180–193, doi: https://doi.org/10.1016/j.virol.2010.12.004.

    Article  CAS  PubMed  Google Scholar 

  33. Taylor, D. R., Puig, M., Darnell, M. E. R., Mihalik, K., and Feinstone, S. M. (2005) New antiviral pathway that mediates hepatitis C virus replicon interferon sensitivity through ADAR1, J. Virol., 79, 6291–6298, doi: https://doi.org/10.1128/JVI.79.10.6291-6298.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zahn, R. C., Schelp, I., Utermohlen, O., and von Laer, D. (2007) A-to-G hypermutation in the genome of lymphocytic choriomeningitis virus, J. Virol., 81, 457–464, doi: https://doi.org/10.1128/JVI.00067-06.

    Article  CAS  PubMed  Google Scholar 

  35. Suspene, R., Petit, V., Puyraimond-Zemmour, D., Aynaud, M.-M., Henry, M., Guetard, D., Rusniok, C., Wain-Hobson, S., and Vartanian, J.-P. (2011) Double-stranded RNA adenosine deaminase ADAR-1-induced hypermutated genomes among inactivated seasonal influenza and live attenuated measles virus vaccines, J. Virol., 85, 2458–2462, doi: https://doi.org/10.1128/JVI.02138-10.

    Article  CAS  PubMed  Google Scholar 

  36. Gandy, S. Z., Linnstaedt, S. D., Muralidhar, S., Cashman, K. A., Rosenthal, L. J., and Casey, J. L. (2007) RNA editing of the human herpesvirus 8 kaposin transcript eliminates its transforming activity and is induced during lytic replication, J. Virol., 81, 13544–13551, doi: https://doi.org/10.1128/JVI.01521-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Iizasa, H., Wulff, B.-E., Alla, N. R., Maragkakis, M., Megraw, M., Hatzigeorgiou, A., Iwakiri, D., Takada, K., Wiedmer, A., Showe, L., Lieberman, P., and Nishikura, K. (2010) Editing of Epstein-Barr virus-encoded BART6 microRNAs controls their dicer targeting and consequently affects viral latency, J. Biol. Chem., 285, 33358–33370, doi: https://doi.org/10.1074/jbc.M110.138362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Toth, A. M., Li, Z., Cattaneo, R., and Samuel, C. E. (2009) RNA-specific adenosine deaminase ADAR1 suppresses measles virus-induced apoptosis and activation of protein kinase PKR, J. Biol. Chem., 284, 29350–29356, doi: https://doi.org/10.1074/jbc.M109.045146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gelinas, J.-F., Clerzius, G., Shaw, E., and Gatignol, A. (2011) Enhancement of replication of RNA viruses by ADAR1 via RNA editing and inhibition of RNA-activated protein kinase, J. Virol., 85, 8460–8466, doi: https://doi.org/10.1128/JVI.00240-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Casey, J. L. (2011) Control of ADAR1 editing of hepatitis delta virus RNAs, in Current Topics in Microbiology and Immunology, Vol. 353, pp. 123–143, doi: https://doi.org/10.1007/82_2011_146.

    Google Scholar 

  41. De Cecco, M., Ito, T., Petrashen, A. P., Elias, A. E., Skvir, N. J., Criscione, S. W., Caligiana, A., Brocculi, G., Adney, E. M., Boeke, J. D., Le, O., Beausejour, C., Ambati, J., Ambati, K., Simon, M., Seluanov, A., Gorbunova, V., Slagboom, P. E., Helfand, S. L., Neretti, N., and Sedivy, J. M. (2019) L1 drives IFN in senescent cells and promotes age-associated inflammation, Nature, 566, 73–78, doi: https://doi.org/10.1038/s41586-018-0784-9.

    Article  CAS  PubMed  Google Scholar 

  42. Gannon, H. S., Zou, T., Kiessling, M. K., Gao, G. F., Cai, D., Choi, P. S., Ivan, A. P., Buchumenski, I., Berger, A. C., Goldstein, J. T., Cherniack, A. D., Vazquez, F., Tsherniak, A., Levanon, E. Y., Hahn, W. C., and Meyerson, M. (2018) Identification of ADAR1 adenosine deaminase dependency in a subset of cancer cells, Nat. Commun., 9, 5450, doi: https://doi.org/10.1038/s41467-018-07824-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xu, L.-D., and Ohman, M. (2018) ADAR1 editing and its role in cancer, Genes (Basel), 10, E12, doi: https://doi.org/10.3390/genes10010012.

    Article  CAS  Google Scholar 

  44. Zhang, M., Fritsche, J., Roszik, J., Williams, L. J., Peng, X., Chiu, Y., Tsou, C.-C., Hoffgaard, F., Goldfinger, V., Schoor, O., Talukder, A., Forget, M. A., Haymaker, C., Bernatchez, C., Han, L., Tsang, Y.-H., Kong, K., Xu, X., Scott, K. L., Singh-Jasuja, H., Lizee, G., Liang, H., Weinschenk, T., Mills, G. B., and Hwu, P. (2018) RNA editing derived epitopes function as cancer antigens to elicit immune responses, Nat. Commun., 9, 3919, doi: https://doi.org/10.1038/s41467-018-06405-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Higuchi, M., Single, F. N., Kohler, M., Sommer, B., Sprengel, R., and Seeburg, P. H. (1993) RNA editing of AMPA receptor subunit GluR-B: a base-paired intron-exon structure determines position and efficiency, Cell, 75, 1361–1370, doi: https://doi.org/10.1016/0092-8674(93)90622-W.

    Article  CAS  PubMed  Google Scholar 

  46. Egebjerg, J., Kukekov, V., and Heinemann, S. F. (1994) Intron sequence directs RNA editing of the glutamate receptor subunit GluR2 coding sequence, Proc. Natl. Acad. Sci. USA, 91, 10270–10274, doi: https://doi.org/10.1073/pnas.91.22.10270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Grice, L. F., and Degnan, B. M. (2015) The origin of the ADAR gene family and animal RNA editing, BMC Evol. Biol., 15, 4, doi: https://doi.org/10.1186/s12862-015-0279-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yablonovitch, A. L., Deng, P., Jacobson, D., and Li, J. B. (2017) The evolution and adaptation of A-to-I RNA editing, PLoS Genet., 13, e1007064, doi: https://doi.org/10.1371/journal.pgen.1007064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., and Mello, C. C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans, Nature, 391, 806–811, doi: https://doi.org/10.1038/35888.

    Article  CAS  PubMed  Google Scholar 

  50. Walkley, C. R., and Li, J. B. (2017) Rewriting the transcriptome: adenosine-to-inosine RNA editing by ADARs, Genome Biol., 18, 205, doi: https://doi.org/10.1186/s13059-017-1347-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liscovitch-Brauer, N., Alon, S., Porath, H. T., Elstein, B., Unger, R., Ziv, T., Admon, A., Levanon, E. Y., Rosenthal, J. J. C., and Eisenberg, E. (2017) Trade-off between transcriptome plasticity and genome evolution in cephalopods, Cell, 169, 191–202.e11, doi: https://doi.org/10.1016/j.cell.2017.03.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Garrett, S., and Rosenthal, J. J. C. (2012) RNA editing underlies temperature adaptation in K+ channels from polar octopuses, Science, 335, 848–851, doi: https://doi.org/10.1126/science.1212795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Iwamoto, K., Bundo, M., and Kato, T. (2009) Serotonin receptor 2C and mental disorders: genetic, expression, and RNA editing studies, RNA Biol., 6, 248–53, doi: https://doi.org/10.4161/rna.6.3.8370.

    Article  CAS  PubMed  Google Scholar 

  54. Barbon, A., and Barlati, S. (2011) Glutamate receptor RNA editing in health and disease, Biochemistry (Moscow), 76, 882–889, doi: https://doi.org/10.1134/S0006297911080037..

    Article  CAS  Google Scholar 

  55. Gallo, A., Vukic, D., Michalik, D., O’Connell, M. A., and Keegan, L. P. (2017) ADAR RNA editing in human disease; more to it than meets the I, Hum. Genet., 136, 1265–1278, doi: https://doi.org/10.1007/s00439-017-1837-0.

    Article  CAS  PubMed  Google Scholar 

  56. Higuchi, M., Maas, S., Single, F. N., Hartner, J., Rozov, A., Burnashev, N., Feldmeyer, D., Sprengel, R., and Seeburg, P. H. (2000) Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2, Nature, 406, 78–81, doi: https://doi.org/10.1038/35017558.

    Article  CAS  PubMed  Google Scholar 

  57. Kawahara, Y., Ito, K., Sun, H., Aizawa, H., Kanazawa, I., and Kwak, S. (2004) RNA editing and death of motor neurons, Nature, 427, 801, doi: https://doi.org/10.1038/427801a.

    Article  CAS  PubMed  Google Scholar 

  58. Kwak, S., and Kawahara, Y. (2005) Deficient RNA editing of GluR2 and neuronal death in amyotropic lateral sclerosis, J. Mol. Med., 83, 110–120, doi: https://doi.org/10.1007/s00109-004-0599-z.

    Article  CAS  PubMed  Google Scholar 

  59. Lyddon, R., Dwork, A. J., Keddache, M., Siever, L. J., and Dracheva, S. (2013) Serotonin 2c receptor RNA editing in major depression and suicide, World J. Biol. Psychiatry, 14, 590–601, doi: https://doi.org/10.3109/15622975.2011.630406.

    Article  PubMed  Google Scholar 

  60. Sommer, B., Kohler, M., Sprengel, R., and Seeburg, P. H. (1991) RNA editing in brain controls a determinant of ion flow in glutamate-gated channels, Cell, 67, 11–19, doi: https://doi.org/10.1016/0092-8674(91)90568-J.

    Article  CAS  PubMed  Google Scholar 

  61. Patterson, J. B., and Samuel, C. E. (1995) Expression and regulation by interferon of a double-stranded-RNA-specific adenosine deaminase from human cells: evidence for two forms of the deaminase, Mol. Cell. Biol., 15, 5376–5388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wright, A., and Vissel, B. (2012) The essential role of AMPA receptor GluR2 subunit RNA editing in the normal and diseased brain, Front. Mol. Neurosci., 5, 34, doi: https://doi.org/10.3389/fnmol.2012.00034.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Funding. This work is supported by the Russian Science Foundation (project no. 17-15-01229).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Moshkovskii.

Ethics declarations

Conflict of interest. The authors declare no conflict of interest in financial of any other sphere.

Ethical approval. This paper contains no studies using animal or human subjects.

Additional information

Published in Russian in Biokhimiya, 2019, Vol. 84, No. 8, pp. 1129–1138.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goncharov, A.O., Kliuchnikova, A.A., Nasaev, S.S. et al. RNA Editing by ADAR Adenosine Deaminases: From Molecular Plasticity of Neural Proteins to the Mechanisms of Human Cancer. Biochemistry Moscow 84, 896–904 (2019). https://doi.org/10.1134/S0006297919080054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297919080054

Keywords

Navigation