Skip to main content
Log in

RNA (C5-cytosine) Methyltransferases

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The review summarizes the data on pro- and eukaryotic RNA (C5-cytosine) methyltransferases. The structure, intracellular location, RNA targets, and catalytic mechanisms of these enzymes, as well as the functional role of methylated cytosine residues in RNA are presented. The functions of RNA (C5-cytosine) methyltransferases unassociated with their methylation activity are discussed. Special attention is given to the similarities and differences in the structures and mechanisms of action of RNA and DNA methyltransferases. The data on the association of mutations in the RNA (C5-cytosine) methyltransferases genes and human diseases are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

m5C:

5-methylcytosine

RNA-C5-methyltransferase:

RNA (C5-cytosine) methyltransferase

SAM:

S-adenosyl-L-methionine

References

  1. Boccaletto, P., Machnicka, M. A., Purta, E., Piatkowski, P., Baginski, B., Wirecki, T. K., de Crecy-Lagard, V., Ross, R., Limbach, P. A., Kotter, A., Helm, M., and Bujnicki, J. M. (2018) MODOMICS: a database of RNA modification pathways. 2017 update, Nucleic Acids Res., 46, 303–307, doi: https://doi.org/10.1093/nar/gkx1030.

    Article  CAS  Google Scholar 

  2. Chen, Y., Sierzputowska-Gracz, H., Guenther, R., Everett, K., and Agris, P. (1993) 5-Methylcytidine is required for cooperative binding of Mg2+ and a conformational transition at the anticodon stem-loop of yeast phenylalanine tRNA, Biochemistry, 32, 10249–10253.

    Article  CAS  PubMed  Google Scholar 

  3. Gowher, H., and Jeltsch, A. (2018) Mammalian DNA methyltransferases: new discoveries and open questions, Biochem. Soc. Trans., 46, 1191–1202, doi: https://doi.org/10.1042/BST20170574.

    Article  CAS  PubMed  Google Scholar 

  4. Trixl, L., and Lusser, A. (2019) The dynamic RNA modification 5-methylcytosine and its emerging role as an epitranscriptomic mark, Wiley Interdiscip. Rev. RNA, 10, e1510, doi: https://doi.org/10.1002/wrna.1510.

    Article  CAS  PubMed  Google Scholar 

  5. Bohnsack, K. E., Hobartner, K., and Bohnsack, M. T. (2019) Eucaryotic 5-methylcytosine (m5C) RNA methyltransferases: mechanisms, cellular functions, and links to disease, Genes, 10, 102, doi: https://doi.org/10.3390/genes10020102.

    Article  CAS  PubMed Central  Google Scholar 

  6. Schaefer, M., Pollex, T., Hanna, K., and Lyko, F. (2009) RNA cytosine methylation analysis by bisulfite sequencing, Nucleic Acids Res., 37, e12, doi: https://doi.org/10.1093/nar/gkn954.

    Article  CAS  PubMed  Google Scholar 

  7. Edelheit, S., Schwartz, S., Mumbach, M., Wurtzel, O., and Sorek, R. (2013) Transcriptome-wide mapping of 5-methylcytidine RNA modifications in bacteria, archaea, and yeast reveals m(5)C within archaeal mRNAs, PLoS Genet., 9, e1003602, doi: https://doi.org/10.1371/journal.pgen.1003602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Khoddami, V., and Cairns, B. (2013) Identification of direct targets and modified bases of RNA cytosine methyltransferases, Nat Biotechnol., 31, 458–464, doi: https://doi.org/10.1038/nbt.2566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. George, H., Ule, J., and Hussain, S. (2017) Illustrating the epitranscriptome at nucleotide resolution using methylation-iCLIP (miCLIP), Methods Mol. Biol., 1562, 91–106, doi: https://doi.org/10.1007/978-1-4939-6807-7_7.

    Article  CAS  PubMed  Google Scholar 

  10. Squires, J., Patel, H., Nousch, M., Sibbritt, T., Humphreys, D., Parker, B. J., Suter, C. M., and Preiss, T. (2012) Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA, Nucleic Acids Res., 40, 5023–2033, doi: https://doi.org/10.1093/nar/gks144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hoernes, T., Clementi, N., Faserl, K., Glasner, H., Breuker, K., and Lindner, H. (2016) Nucleotide modifications within bacterial messenger RNAs regulate their translation and are able to rewire the genetic code, Nucleic Acids Res., 44, 852–862, doi: https://doi.org/10.1093/nar/gkv1182.

    Article  CAS  PubMed  Google Scholar 

  12. Dominissini, D., Nachtergaele, S., Moshitch-Moshkovitz, S., Peer, E., Kol, N., Ben-Haim, M. S., Dai, Q, Di Segni, A., Salmon-Divon, M., Clark, W. C., Guanqun Zheng, G., Pan, T., Solomon, O., Eran Eyal, E., Hershkovitz, V., Han, D., Dore, L. C., Amariglio, N., Rechavi, G., and He, C. (2016) The dynamic N1-methyladenosine methylome in eukaryotic messenger RNA, Nature, 530, 441–446, doi: https://doi.org/10.1038/nature16998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Amort, T., Rieder, D., Wille, A., Khokhlova-Cubberley, D., Riml, C., Trixl, L., Jia, X. Y., Micura, R., and Lusser, A. (2017) Distinct 5-methylcytosine profiles in poly(A) RNA from mouse embryonic stem cells and brain, Genome Biol., 18, 1, doi: https://doi.org/10.1186/s13059-016-1139-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Amort, T., Souliere, M., Wille, A., Jia, X., Fiegl, H., Worle, H., Micura, R., and Lusser, A. (2013) Long non-coding RNAs as targets for cytosine methylation, RNA Biol., 10, 1003–1008, doi: https://doi.org/10.4161/rna.24454.

    Article  CAS  PubMed  Google Scholar 

  15. Yang, X., Yang, Y., Sun, B., Chen, Y., Xu, J., Lai, W., Li, A., Wang, X., Bhattarai, D. P., Xiao, W., Sun, H.-Y., Zhu, Q., Hai-Li Ma, H.-L., Adhikari, S., Sun, M., Hao, Y.-J., Bing Zhang, B., Chun-Min Huang, C.-M., Huang, N., Jiang, G.-B., Zhao, Y.-L., Wang, H.-L., Sun, Y.-P., and Yang, Y.-G. (2017) 5-Methylcytosine promotes mRNA export — NSUN2 as the methyltransferase and ALYREF as an m5C reader, Cell Res., 27, 606–625, doi: https://doi.org/10.1038/cr.2017.55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Reid, R., Greene, P., and Santi, D. (1999) Exposition of a family of RNA m(5)C methyltransferases from searching genomic and proteomic sequences, Nucleic Acids Res., 27, 3138–3145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Walbott, H., Husson, C., Auxilien, S., and Golinelli-Pimpaneau, B. (2007) Cysteine of sequence motif VI is essential for nucleophilic catalysis by yeast tRNA m5C methyltransferase, RNA, 13, 967–973, doi: https://doi.org/10.1261/rna.515707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu, Y., and Santi, D. (2000) m5C RNA and m5C DNA methyltransferases use different cysteine residues as catalysts, Proc. Natl. Acad. Sci. USA, 97, 8263–8265.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, X., and Bruice, T. (2006) The mechanism of M.HhaI DNA C5 cytosine methyltransferase enzyme: a quantum mechanics/molecular mechanics approach, Proc. Natl. Acad. Sci. USA, 103, 6148–6153, doi: https://doi.org/10.1073/pnas.0601587103.

    Article  CAS  PubMed  Google Scholar 

  20. Gu, X., Gustafsson, C., Ku, J., Yu, M., and Santi, D. (1999) Identification of the 16S rRNA m5C967 methyltransferase from Escherichia coli, Biochemistry, 38, 4053–4057, doi: https://doi.org/10.1021/bi982364y.

    Article  CAS  PubMed  Google Scholar 

  21. Lesnyak, D. V., Osipiuk, J., Skarina, T., Sergiev, P. V., Bogdanov, A. A., Edwards, A., Savchenko, A., Joachimiak, A., and Dontsova, O. A. (2007) Methyltransferase that modifies guanine 966 of the 16S rRNA: functional identification and tertiary structure, J. Biol. Chem., 282, 5880–5887, doi: https://doi.org/10.1074/jbc.M608214200.

    Article  CAS  PubMed  Google Scholar 

  22. Tscherne, J., Nurse, K., Popienick, P., Michel, H., Sochacki, M., and Ofengand, J. (1999) Purification, cloning, and characterization of the 16S RNA m5C967 methyltransferase from Escherichia coli, Biochemistry, 38, 1884–1892, doi:https://doi.org/10.1021/bi981880l.

    Article  CAS  PubMed  Google Scholar 

  23. Weitzmann, C., Tumminia, S., Boublik, M., and Ofengand, J. (1991) A paradigm for local conformational control of function in the ribosome: binding of ribosomal protein S19 to Escherichia coli 16S rRNA in the presence of S7 is required for methylation of m2G966 and blocks methylation of m5C967 by their respective methyltransferases, Nucleic Acids Res., 19, 7089–7095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Foster, P., Nunes, C., Greene, P., Moustakas, D., and Stroud, R. (2003) The first structure of an RNA m5C methyltransferase, Fmu, provides insight into catalytic mechanism and specific binding of RNA substrate, Structure, 11, 1609–1620, doi: https://doi.org/10.1016/j.str.2003.10.014.

    Article  CAS  PubMed  Google Scholar 

  25. Burakovsky, D., Prokhorova, I., Sergiev, P., and Milon, P. (2012) Impact of methylations of m2G966/m5C967 in 16S rRNA on bacterial fitness and translation initiation, Nucleic Acids Res., 40, 7885–7895, doi: https://doi.org/10.1093/nar/gks508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Prokhorova, I., Osterman, I., Burakovsky, D., and Serebryakova, M. (2013) Modified nucleotides m2G966/m5C967 of Escherichia coli 16S rRNA are required for attenuation of tryptophan operon, Sci. Rep., 3, 3236, doi: https://doi.org/10.1038/srep03236.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Andersen, N., and Douthwaite, S. (2006) YebU is a m5C methyltransferase specific for 16S rRNA nucleotide 1407, J. Mol. Biol., 359, 777–786, doi: https://doi.org/10.1016/j.jmb.2006.04.007.

    Article  CAS  PubMed  Google Scholar 

  28. Hallberg, B., Ericsson, U., Johnson, K., Andersen, N., Douthwaite, S., Nordlund, P., Beuscher, A. E., and Erlandsen, H. (2006) The structure of the RNA m5C methyltransferase YebU from Escherichia coli reveals a C-terminal RNA-recruiting PUA domain, J. Mol. Biol., 360, 774–787, doi: https://doi.org/10.1016/j.jmb.2006.05.047.

    Article  CAS  PubMed  Google Scholar 

  29. Purta, E., O’Connor, M., Bujnicki, J., and Douthwaite, S. (2008) YccW is the m5C methyltransferase specific for 23S rRNA nucleotide 1962, J. Mol. Biol., 383, 641–651, doi: https://doi.org/10.1016/j.jmb.2008.08.061.

    Article  CAS  PubMed  Google Scholar 

  30. Sunita, S., Tkaczuk, K., Purta, E., Kasprzak, J., Douthwaite, S., Bujnicki, J., and Sivaraman, J. (2008) Crystal structure of the Escherichia coli 23S rRNA:m5C methyltransferase RlmI (YccW) reveals evolutionary links between RNA modification enzymes, J. Mol. Biol., 383, 652–666, doi: https://doi.org/10.1016/j.jmb.2008.08.062.

    Article  CAS  PubMed  Google Scholar 

  31. Rodriguez, V., Vasudevan, S., Noma, A., Carlson, B., Green, J., Suzuki, T, and Chandrasekharappa, S. C. (2012) Structure-function analysis of human TYW2 enzyme required for the biosynthesis of a highly modified wybutosine (yW) base in phenylalanine-tRNA, PLoS One, 7, e39297, doi: https://doi.org/10.1371/journal.pone.0039297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jurkowski, T., and Jeltsch, A. (2011) On the evolutionary origin of eukaryotic DNA methyltransferases and Dnmt2, PLoS One, 6, e28104, doi: https://doi.org/10.1371/journal.pone.0028104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Goll, M., Kirpekar, F., Maggert, K., Yoder, J., Hsieh, C., Zhang, X., Golic, K., Jacobsen, S., and Bestor, T. (2006) Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2, Science, 311, 395–398, doi: https://doi.org/10.1371/journal.pone.0028104.

    Article  CAS  PubMed  Google Scholar 

  34. Shanmugam, R., Aklujkar, M., Schafer, M., Reinhardt, R., Nickel, O., Reuter, G., Lovley, D. R., Ehrenhofer-Murray, A., Nellen, W., Ankri, S., Helm, M., Jurkowski, T. P., and Jeltsch, A. (2014) The Dnmt2 RNA methyltransferase homolog of Geobacter sulfurreducens specifically methylates tRNA-Glu, Nucleic Acids Res., 42, 6487–6496, doi: https://doi.org/10.1093/nar/gku256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schaefer, M., Pollex, T., Hanna, K., Tuorto, F., Meusburger, M., Helm, M., and Lyko, F. (2010) RNA methylation by Dnmt2 protects transfer RNAs against stress-induced cleavage, Genes Dev., 24, 1590–1595, doi: https://doi.org/10.1101/gad.586710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Haussecker, D., Huang, Y., Lau, A., Parameswaran, P., Fire, A., and Kay, M. (2010) Human tRNA-derived small RNAs in the global regulation of RNA silencing, RNA, 16, 673–695, doi: https://doi.org/10.1261/rna.2000810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shanmugam, R., Fierer, J., Kaiser, S., Helm, M., Jurkowski, T., and Jeltsch, A. (2015) Cytosine methylation of tRNA-Asp by DNMT2 has a role in translation of proteins containing poly-Asp sequences, Cell Discov., 1, 15010, doi: https://doi.org/10.1038/celldisc.2015.10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zaborske, J., Vanessa, L., DuMont, B., Wallace, E., Pan, T., Aquadro, C., and Drummond, A. (2014) A nutrient-driven tRNA modification alters translational fidelity and genome-wide protein coding across an animal genus, PLoS Biol., 12, e1002015, doi: https://doi.org/10.1371/journal.pbio.1002015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Muller, M., Hartmann, M., Schuster, I., Bender, S., Thuring, K., Helm, M., Katze, J., Nellen, W., Lyko, F., and Ehrenhofer-Murray, A. (2015) Dynamic modulation of Dnmt2-dependent tRNA methylation by the micronutrient queuine, Nucleic Acids Res., 43, 10952–10962, doi: https://doi.org/10.1093/nar/gkv980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schaefer, M., Steringer, J., and Lyko, F. (2008) The Drosophila cytosine-5 methyltransferase Dnmt2 is associated with the nuclear matrix and can access DNA during mitosis, PloS One, 3, e1414, doi: https://doi.org/10.1371/journal.pone.0001414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lin, M., Tang, L., Reddy, M., and Shen, C. (2005) DNA methyltransferase gene dDnmt2 and longevity of Drosophila, J. Biol. Chem., 280, 861–864, doi: https://doi.org/10.1074/jbc.C400477200.

    Article  CAS  PubMed  Google Scholar 

  42. Forbes, S., Beare, D., Gunasekaran, P., Leung, K., Bindal, N., Boutselakis, H., Ding, M., Bamford, S., Cole, C., Ward, S., Kok, C. Y., Jia, M., De, T., Teague, J. W., Stratton, M. R., McDermott, U., and Campbell, P. J. (2015) COSMIC: exploring the world’s knowledge of somatic mutations in human cancer, Nucleic Acids Res., 43, 805–811, doi: https://doi.org/10.1093/nar/gku1075.

    Article  CAS  Google Scholar 

  43. Chen, Q., Yan, M., Cao, Z., Li, X., Zhang, Y., Shi, J., Feng, G., Peng, H., Zhang, X., Zhang, Y., Qian, J., Duan, E., Zhai, Q., and Zhou, Q. (2016) Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder, Science, 351, 397–400, doi: https://doi.org/10.1126/science.aad7977.

    Article  CAS  PubMed  Google Scholar 

  44. Sardana, R., and Johnson, A. (2012) The methyltransferase adaptor protein Trm112 is involved in biogenesis of both ribosomal subunits, Mol. Biol. Cell., 23, 4313–4322, doi: https://doi.org/10.1091/mbc.E12-05-0370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vasilieva, E. N., Laptev, I. G., Sergiev, P. V., and Dontsova, O. A. (2018) The common partners of several methyltransferases modifying components of the eukaryotic translation apparatus, Mol. Biol. (Moscow), 52, 975–983, doi: https://doi.org/10.1134/S0026898418060174.

    Article  CAS  Google Scholar 

  46. Sharma, S., Yang, J., Watzinger, P., Kotter, P., and Entian, K. (2013) Yeast Nop2 and Rcm1 methylate C2870 and C2278 of the 25S rRNA, respectively, Nucleic Acids Res., 41, 9062–9076, doi: https://doi.org/10.1093/nar/gkt679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gustafson, W., Taylor, C., Valdez, B., Henning, D., Phippard, A., Ren, Y., Busch, H., and Durban, E. (1998) Nucleolar protein p120 contains an arginine-rich domain that binds to ribosomal RNA, Biochem. J., 331, 387–393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Valdez, B. C., Perlaky, L., Henning, D., Saijo, Y., Chan, P. K., and Busch, H. (1994) Identification of the nuclear and nucleolar localization signals of the protein p120 interaction with translocation protein B23, J. Biol. Chem., 269, 23776–23783.

    CAS  PubMed  Google Scholar 

  49. Bourgeois, G., Ney, M., Gaspar, I., Aigueperse, C., Schaefer, M., Kellner, S., Helm, M., and Motorin, Y. (2015) Eukaryotic rRNA modification by yeast 5-methyl-cytosine-methyltransferases and human proliferation-associated antigen p120, PLoS One, 10, e0133321, doi: https://doi.org/10.1371/journal.pone.0133321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hong, B., Brockenbrough, J., Wu, P., and Aris, P. (1997) Nop2p is required for pre-rRNA processing and 60S ribosome subunit synthesis in yeast, Mol. Cell. Biol., 17, 378–388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fonagy, A., Swiderski, C., Wilson, A., Bolton, W., Kenyon, N., and Freeman, J. (1993) Cell cycle regulated expression of nucleolar antigen P120 in normal and transformed human fibroblasts, J. Cell. Physiol., 154, 16–27.

    Article  CAS  PubMed  Google Scholar 

  52. Perlaky, L., Valdez, B., Busch, R., Larson, R., Jhiang, S., Zhang, W., Brattain, M., and Busch, H. (1992) Increased growth of NIH/3T3 cells by transfection with human p120 complementary DNA and inhibition by a p120 antisense construct, Cancer Res., 52, 428–436.

    CAS  PubMed  Google Scholar 

  53. Fonagy, A., Swiderski, C., Ostrovsky, A., Bolton, W., and Freeman, J. (1994) Effect of nucleolar p120 expression level on the proliferation capacity of breast cancer cells, Cancer Res., 54, 1859–1864.

    CAS  PubMed  Google Scholar 

  54. Khanna-Gupta, A., Sun, H., Zibello, T., Lozovatsky, L., Ghosh, P., Link, D., McLemore, M., and Berliner, N. (2006) p120 nucleolar-proliferating antigen is a direct target of G-CSF signaling during myeloid differentiation, J. Leukoc. Biol., 79, 1011–1021, doi: https://doi.org/10.1189/jlb.0205066.

    Article  CAS  PubMed  Google Scholar 

  55. Kosi, N., Alic, I., Kolacevic, M., Vrsaljko, N., Jovanov, Milosevic, N., Sobol, M., and Mitrecic, D. (2015) Nop2 is expressed during proliferation of neural stem cells and in adult mouse and human brain, Brain Res., 1597, 65–76, doi: https://doi.org/10.1016/j.brainres.

    Article  CAS  PubMed  Google Scholar 

  56. Blanco, S., Dietmann, S., Flores, J. V., Hussain, S., Kutter, C., Humphreys, P., Lukk, M., Lombard, P., Treps, L., Popis, M., Kellner, S., Holter, S. M., Garrett, L., Wurst, W., Becker, L., Klopstock, T., Fuchs, H., Gailus-Durner, V., Hrabe de Angelis, M., Karadottir, R. T., Helm, M., Ule, J., Gleeson, J. G., Odom, D. T., and Frye, M. (2014) Aberrant methylation of tRNAs links cellular stress to neuro-developmental disorders, EMBO J., 33, 2020–2039, doi: https://doi.org/10.15252/embj.201489282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Brzezicha, B., Schmidt, M., Makalowska, I., Jarmolowski, A., Pienkowska, J., and Szweykowska-Kulinska, Z. (2006) Identification of human tRNA:m5C methyltransferase catalyzing intron-dependent m5C formation in the first position of the anticodon of the pre-tRNALeu(CAA), Nucleic Acids Res., 34, 6034–6043, doi: https://doi.org/10.1093/nar/gkl765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ivanov, P., Emara, M., Villen, J., Steven, P., Gygi, S., and Anderson, P. (2011) Angiogenin-induced tRNA fragments inhibit translation initiation, Mol. Cell., 43, 613–623, doi: https://doi.org/10.1016/j.molcel.2011.06.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang, N., Tang, H., Wang, X., Wang, W., and Feng, J. (2017) Homocysteine upregulates interleukin-17A expression via NSun2-mediated RNA methylation in T lymphocytes, Biochem. Biophys. Res. Commun., 493, 94–99, doi: https://doi.org/10.1016/j.bbrc.2017.09.069.

    Article  CAS  PubMed  Google Scholar 

  60. Luo, Y., Feng, J., Xu, Q., Wang, W., and Wang, X. (2016) NSun2 deficiency protects endothelium from inflammation via mRNA methylation of ICAM-1, Circ. Res., 118, 944–956, doi: https://doi.org/10.1161/CIRCRESAHA.115.307674.

    Article  CAS  PubMed  Google Scholar 

  61. Tang, H., Fan, X., Xing, J., Liu, Z., Jiang, B., Dou, Y., Gorospe, M., and Wang, W. (2015) NSun2 delays replicative senescence by repressing p27 (KIP1) translation and elevating CDK1 translation, Aging, 7, 1143–1155, doi: https://doi.org/10.18632/aging.100860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang, X., Liu, Z., Yi, J., Tang, H., Xing, J., Yu, M., Tong, T., Shang, Y., Gorospe, M., and Wang, W. (2012) The tRNA methyltransferase NSun2 stabilizes p16INK4 mRNA by methylating the 3′-untranslated region of p16, Nat. Commun., 3, 712, doi: https://doi.org/10.1038/ncomms1692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Khoddami, V., and Cairns, B. (2013) Identification of direct targets and modified bases of RNA cytosine methyltransferases, Nat. Biotechnol., 31, 458–464, doi: https://doi.org/10.1038/nbt.2566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Berger, W., Steiner, E., Grusch, M., Elbling, L., and Micksche, M. (2009) Vaults and the major vault protein: novel roles in signal pathway regulation and immunity, Cell. Mol. Life Sci., 66, 43–61, doi: https://doi.org/10.1007/s00018-008-8364-z.

    Article  CAS  PubMed  Google Scholar 

  65. Hussain, S., Sajini, A., Blanco, S., Dietmann, S., Lombard, P., Sugimoto, Y., Paramor, M., Gleeson, J., Odom, D., Ule, J., and Frye, M. (2013) NSun2-mediated cytosine-5 methylation of vault non-coding RNA determines its processing into regulatory small RNAs, Cell Rep., 4, 255–261, doi: https://doi.org/10.1016/j.celrep.2013.06.029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hussain, S., Benavente, S. B., Nascimento, E., Dragoni, I., Kurowski, A., Gillich, A., Humphreys, P., and Frye, M. (2009) The nucleolar RNA methyltransferase Misu (NSun2) is required for mitotic spindle stability, J. Cell. Biol., 186, 27–40, doi: https://doi.org/10.1083/jcb.200810180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Frye, M., and Watt, F. (2006) The RNA methyltransferase Misu (NSun2) mediates Myc-induced proliferation and is upregulated in tumors, Curr. Biol., 16, 971–981, doi: https://doi.org/10.1016/j.cub.2006.04.027.

    Article  CAS  PubMed  Google Scholar 

  68. Sakita-Suto, S., Kanda, A., Suzuki, F., Sato, S., Takata, T., and Tatsuka, M. (2007) Aurora B regulates RNA methyltransferase NSun2, Mol. Biol. Cell., 18, 1107–1117, doi: https://doi.org/10.1091/mbc.E06-11-1021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Blanco, S., Kurowski, A., Nichols, J., Watt, F., Benitah, S., and Frye, M. (2011) The RNA-methyltransferase Misu (NSun2) poises epidermal stem cells to differentiate, PLoS Genet., 7, e1002403, doi: https://doi.org/10.1371/journal.pgen.1002403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hussain, S., Tuorto, F., Menon, S., Blanco, S., Cox, C., Flores, J., Watt, S., Kudo, N., Lyko, F., and Frye, M. (2013) The mouse cytosine-5 RNA methyltransferase NSun2 is a component of the chromatoid body and required for testis differentiation, Mol. Cell. Biol., 33, 1561–1570, doi: https://doi.org/10.1128/MCB.01523-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yi, J., Gao, R., Chen, Y., Yang, Z., Han, P., Zhang, H., Dou, Y., Liu, W., Wang, W., Du, G., Xu, Y., and Wang, J. (2017) Overexpression of NSUN2 by DNA hypomethylation is associated with metastatic progression in human breast cancer, Oncotarget, 8, 20751–20765, doi: https://doi.org/10.18632/oncotarget.10612.

    PubMed  Google Scholar 

  72. Abbasi-Moheb, L., Mertel, S., Gonsior, M., Nouri-Vahid, L., Kahrizi, K., Cirak, S., Wieczorek, D., Motazacker, M., Esmaeeli-Nieh, S., Cremer, K., Weissmann, R., Tzschach, A., Garshasbi, M., Abedini, S., Najmabadi, H., Ropers, H., Sigrist, S., and Kuss, A. (2012) Mutations in NSUN2 cause autosomal-recessive intellectual disability, Am. J. Hum. Genet., 90, 847–855, doi: https://doi.org/10.1016/j.ajhg.2012.03.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Martinez, F., Lee, J., Lee, J., Blanco, S., Nickerson, E., Gabriel, S., Frye, M., Al-Gazali, L., and Gleeson, J. (2012) Whole exome sequencing identifies a splicing mutation in NSUN2 as a cause of a Dubowitz-like syndrome, J. Med. Genet., 49, 380–385, doi: https://doi.org/10.1136/jmedgenet-2011-100686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Nakano, S., Suzuki, T., Kawarada, L., Iwata, H., Asano, K., and Suzuki, T. (2016) NSUN3 methylase initiates 5-formylcytidine biogenesis in human mitochondrial tRNAMet, Nat. Chem. Biol., 12, 546–551, doi: https://doi.org/10.1038/nchembio.

    Article  CAS  PubMed  Google Scholar 

  75. Cantara, W., Murphy, V., Demirci, H., and Agris, P. (2013) Expanded use of sense codons is regulated by modified cytidines in tRNA, Proc. Natl. Acad. Sci. USA, 110, 10964–10969, doi: https://doi.org/10.1073/pnas.1222641110.

    Article  PubMed  Google Scholar 

  76. Haag, S., Sloan, K., Ranjan, N., Warda, A., Kretschmer, J., Blessing, C., Hubner, B., Seikowski, J., Dennerlein, S., Rehling, P., Rodnina, M., Hobartner, C., and Bohnsack, M. (2016) NSUN3 and ABH1 modify the wobble position of mt-tRNAMet to expand codon recognition in mitochondrial translation, EMBO J., 35, 2104–2119, doi: https://doi.org/10.15252/embj.201694885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Trixl, L., Amort, T., Wille, A., Zinni, M., Ebner, S., Hechenberger, C., Eichin, F., Gabriel, H., Schoberleitner, I., Huang, A., Piatti, P., Nat, R., Troppmair, J., and Lusser, A. (2018) RNA cytosine methyltransferase Nsun3 regulates embryonic stem cell differentiation by promoting mitochondrial activity, Cell. Mol. Life Sci., 75, 1483–1497, doi: https://doi.org/10.1007/s00018-017-2700-0.

    Article  CAS  PubMed  Google Scholar 

  78. Van Haute, L., Dietmann, S., Kremer, L., Hussain, S., Pearce, S., Powell, C., Rorbach, J., Lantaff, R., Blanco, S., Sauer, S., Kotzaeridou, U., Hoffmann, G., Memari, Y., Kolb-Kokocinski, A., Durbin, R., Mayr, J., Frye, M., Prokisch, H., and Minczuka, M. (2016) Deficient methylation and formylation of mt-tRNAMet wobble cytosine in a patient carrying mutations in NSUN3, Nat. Commun., 7, 12039, doi: https://doi.org/10.1038/ncomms12039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Metodiev, M. D., Spahr, H., Loguercio Polosa, P., Meharg, C., Becker, C., Altmueller, J., Habermann, B., Larsson, N. G., and Ruzzenente, B. (2014) NSUN4 is a dual function mitochondrial protein required for both methylation of 12S rRNA and coordination of mitoribosomal assembly, PLoS Genet., 10, e1004110, doi: https://doi.org/10.1371/journal.pgen.1004110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yakubovskaya, E., Guja, K. E., Mejia, E., Castano, S., Hambardjieva, E., Choi, W. S., and Garcia-Diaz, M. (2012) Structure of the essential MTERF4:NSUN4 protein complex reveals how an MTERF protein collaborates to facilitate rRNA modification, Structure, 20, 1940–1947, doi: https://doi.org/10.1016/j.str.2012.08.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Spahr, H., Habermann, B., Gustafsson, C., Larsson, N., and Hallberg, B. (2012) Structure of the human MTERF4-NSUN4 protein complex that regulates mitochondrial ribosome biogenesis, Proc. Natl. Acad. Sci. USA, 109, 15253–15258, doi: https://doi.org/10.1073/pnas.1210688109.

    Article  PubMed  Google Scholar 

  82. Camara, Y., Asin-Cayuela, J., Park, C., Metodiev, M., Shi, Y., Ruzzenente, B., Kukat, C., Habermann, B., Wibom, R., Hultenby, K., Franz, T., Erdjument-Bromage, H., Tempst, P., Hallberg, M., Gustafsson, C. M., and Larsson, N.-G. (2011) MTERF4 regulates translation by targeting the methyltransferase NSUN4 to the mammalian mitochondrial ribosome, Cell. Metab., 13, 527–539, doi: https://doi.org/10.1016/j.cmet.2011.04.002.

    Article  CAS  PubMed  Google Scholar 

  83. Schosserer, M., Minois, N., Angerer, T. B., Amring, M., Dellago, H., Harreither, E., Calle-Perez, A., Pircher, A., Gerstl, M. P., Pfeifenberger, S., Brandl, C., Sonntagbauer, M., Kriegner, A., Linder, A., Weinhausel, A., Mohr, T., Steiger, M., Mattanovich, D., Rinnerthaler, M., Karl, T., Sharma, S., Entian, K. D., Kos, M., Breitenbach, M., Wilson, I. B., Polacek, N., Grillari-Voglauer, R., Breitenbach-Koller, L., and Grillari, J. (2015) Methylation of ribosomal RNA by NSUN5 is a conserved mechanism modulating organismal lifespan, Nat. Commun., 6, 6158, doi: https://doi.org/10.1038/ncomms7158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ramani, A. K., Li, Z., Hart, G. T., Carlson, M. W., Boutz, D. R., and Marcotte, E. M. (2008) A map of human protein interactions derived from co-expression of human mRNAs and their orthologs, Mol. Systems Biol., 4, 180, doi: https://doi.org/10.1038/msb.2008.19.

    Article  CAS  Google Scholar 

  85. Haag, S., Warda, A., Kretschmer, J., Gunnigmann, M., Hobartner, C., and Bohnsack, M. (2015) NSUN6 is a human RNA methyltransferase that catalyzes formation of m5C72 in specific tRNAs, RNA, 21, 1532–1543, doi: https://doi.org/10.1261/rna.051524.115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Long, T., Li, J., Li, H., Zhou, M., Zhou, X., Liu, R., and Wang, E. (2016) Sequence-specific and shape-selective RNA recognition by the human RNA 5-methylcytosine methyltransferase NSun6, J. Biol. Chem., 291, 24293–24303, doi: https://doi.org/10.1074/jbc.M116.742569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Liu, R., Long, T., Li, J., Li, H., and Wang, E. (2017) Structural basis for substrate binding and catalytic mechanism of a human RNA:m5C methyltransferase NSun6, Nucleic Acids Res., 45, 6684–6697, doi: https://doi.org/10.1093/nar/gkx473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Li, C., Wang, S., Xing, Z., Lin, A., Liang, K., Song, J., Hu, Q., Yao, J., Chen, Z., Park, P. K., Hawke, D. H., Zhou, J., Zhou, Y., Zhang, S., Liang, H., Hung, M. C., Gallick, G. E., Han, L., Lin, C., and Yang, L. (2017) A ROR1-HER3-LncRNA signaling axis modulates the Hippo-YAP pathway to regulate bone metastasis, Nat. Cell. Biol., 19, 106–119, doi: https://doi.org/10.1038/ncb3464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Chalmel, F., Rolland, A. D., Niederhauser-Wiederkehr, C., Chung, S. S., Demougin, P., Gattiker, A., Moore, J., Patard, J. J., Wolgemuth, D. J., Jegou, B., and Primig, M. (2007) The conserved transcriptome in human and rodent male gametogenesis, Proc. Natl. Acad. Sci. USA, 104, 8346–8351, doi: https://doi.org/10.1073/pnas.0701883104.

    Article  CAS  PubMed  Google Scholar 

  90. Harris, T., Marquez, B., Suarez, S., and Schimenti, J. (2007) Sperm motility defects and infertility in male mice with a mutation in Nsun7, a member of the Sun domain-containing family of putative RNA methyltransferases, Biol. Reprod., 77, 376–382, doi: https://doi.org/10.1095/biolreprod.106.058669.

    Article  CAS  PubMed  Google Scholar 

  91. Khosronezhad, N., Colagar, A., and Mortazavi, S. (2015) The Nsun7 (A11337)-deletion mutation, causes reduction of its protein rate and associated with sperm motility defect in infertile men, J. Assist. Reprod. Genet., 32, 807–815, doi: https://doi.org/10.1007/s10815-015-0443-0.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Khosronejad, N., Colagar, A., and Jorsarayi, S. (2015) T26248G-transversion mutation in exon 7 of the putative methyltransferase Nsun7 gene causes a change in protein folding associated with reduced sperm motility in asthenospermic men, Reprod. Fertil. Dev., 27, 471–480, doi: https://doi.org/10.1071/RD13371.

    Article  CAS  Google Scholar 

  93. Aguilo, F., Li, S., Balasubramaniyan, N., Sancho, A., Benko, S., Zhang, F., Vashisht, A., Rengasamy, M., Andino, B., Chen, C. H., Zhou, F., Qian, C., Zhou, M. M., Wohlschlegel, J. A., Zhang, W., Suchy, F. J., and Walsh, M. J. (2016) Deposition of 5-methylcytosine on enhancer RNAs enables the coactivator function of PGC-1α, Cell Rep., 14, 479–492, doi: https://doi.org/10.1016/j.celrep.2015.12.043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Funding. The work was supported by the Russian Science Foundation (project 17-75-30027) and Russian Foundation for Basic Research (project 17-00-00366).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Kuznetsova.

Ethics declarations

Conflict of interest. The authors declare no conflict of interest.

Compliance of ethical norms. The article does not contain description of studies performed using humans or animals as subjects.

Additional information

Russian Text © The Author(s), 2019, published in Biokhimiya, 2019, Vol. 84, No. 8, pp. 1076–1098.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsova, S.A., Petrukov, K.S., Pletnev, F.I. et al. RNA (C5-cytosine) Methyltransferases. Biochemistry Moscow 84, 851–869 (2019). https://doi.org/10.1134/S0006297919080029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297919080029

Keywords

Navigation