Skip to main content
Log in

Mechanisms of Non-coenzyme Action of Thiamine: Protein Targets and Medical Significance

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Thiamine (vitamin B1) is a precursor of the well-known coenzyme of central metabolic pathways thiamine diphosphate (ThDP). Highly intense glucose oxidation in the brain requires ThDP-dependent enzymes, which determines the critical significance of thiamine for neuronal functions. However, thiamine can also act through the non-coenzyme mechanisms. The well-known facilitation of acetylcholinergic neurotransmission upon the thiamine and acetylcholine co-release into the synaptic cleft has been supported by the discovery of thiamine triphosphate (ThTP)-dependent phosphorylation of the acetylcholine receptor-associated protein rapsyn, and thiamine interaction with the TAS2R1 receptor, resulting in the activation of synaptic ion currents. The non-coenzyme regulatory binding of thiamine compounds has been demonstrated for the transcriptional regulator p53, poly(ADP-ribose) polymerase, prion protein PRNP, and a number of key metabolic enzymes that do not use ThDP as a coenzyme. The accumulated data indicate that the molecular mechanisms of the neurotropic action of thiamine are far broader than it has been originally believed, and closely linked to the metabolism of thiamine and its derivatives in animals. The significance of this topic has been illustrated by the recently established competition between thiamine and the antidiabetic drug metformin for common transporters, which can be the reason for the thiamine deficiency underlying metformin side effects. Here, we also discuss the medical implications of the research on thiamine, including the role of thiaminases in thiamine reutilization and biosynthesis of thiamine antagonists; molecular mechanisms of action of natural and synthetic thiamine antagonists, and biotransformation of pharmacological forms of thiamine. Given the wide medical application of thiamine and its synthetic forms, these aspects are of high importance for medicine and pharmacology, including the therapy of neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AThDP:

adenylated thiamine diphosphate

AThTP:

adenylated thiamine triphosphate

OGDHC:

2-oxo-glutarate dehydrogenase complex

PARP:

poly(ADP-ribose) polymerase

PDHC:

pyruvate dehydrogenase complex

ThDP:

thiamine diphosphate

ThDPase:

thiamine diphosphatase

ThMP:

thiamine monophosphate

ThMPase:

thiamine monophosphatase

ThTP:

thiamine triphosphate

ThTPase:

thiamine triphosphatase

References

  1. Stepuro, I. I., Oparin, A. Y., Stsiapura, V. I., Maskevich, S. A., and Titov, V. Y. (2012) Oxidation of thiamine on reaction with nitrogen dioxide generated by ferric myoglobin and hemoglobin in the presence of nitrite and hydrogen peroxide, Biochemistry (Moscow), 77, 41–55, doi: https://doi.org/10.1134/S0006297912010051.

    Article  CAS  Google Scholar 

  2. Parkhomenko, Y. M., Donchenko, G. V., Chehovskaya, L. I., Stepanenko, S. P., Mejenskaya, O. A., and Gorban, E. N. (2015) Metovitan prevents accumulation of thiamin diphosphate oxygenized form in rat tissues under irradiation, Biotechnol. Acta, 8, 63–70, doi: https://doi.org/10.15407/biotech8.04.063.

    CAS  Google Scholar 

  3. Coy, J. F., Dressler, D., Wilde, J., and Schubert, P. (2005) Mutations in the transketolase-like gene TKTL1: clinical implications for neurodegenerative diseases, diabetes and cancer, Clin. Lab., 51, 257–273.

    CAS  PubMed  Google Scholar 

  4. Langbein, S., Zerilli, M., Zur Hausen, A., Staiger, W., Rensch-Boschert, K., Lukan, N., Popa, J., Ternullo, M. P., Steidler, A., Weiss, C., Grobholz, R., Willeke, F., Alken, P., Stassi, G., Schubert, P., and Coy, J. F. (2006) Expression of transketolase TKTL1 predicts colon and urothelial cancer patient survival: Warburg effect reinterpreted, Br. J. Cancer, 94, 578–585, doi: https://doi.org/10.1038/sj.bjc.6602962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Meshalkina, L. E., Drutsa, V. L., Koroleva, O. N., Solovjeva, O. N., and Kochetov, G. A. (2013) Is transketolase-like protein, TKTL1, transketolase? Biochim. Biophys. Acta, 1832, 387–390, doi: https://doi.org/10.1016/j.bbadis.2012.12.004.

    Article  CAS  PubMed  Google Scholar 

  6. Bunik, V. (2017) Vitamin-Dependent Multienzyme Complexes of 2-Oxo Acid Dehydrogenases: Structure, Function, Regulation and Medical Implications, Nova Science Publishers, NY.

    Google Scholar 

  7. Bunik, V. I., Tylicki, A., and Lukashev, N. V. (2013) Thiamin diphosphate-dependent enzymes: from enzymology to metabolic regulation, drug design and disease models, FEBS J., 280, 6412–6442, doi: https://doi.org/10.1111/febs.12512.

    Article  CAS  PubMed  Google Scholar 

  8. Bunik, V. I., Denton, T. T., Xu, H., Thompson, C. M., Cooper, A. J., and Gibson, G. E. (2005) Phosphonate analogues of a-ketoglutarate inhibit the activity of the α-keto-glutarate dehydrogenase complex isolated from brain and in cultured cells, Biochemistry, 44, 10552–10561, doi: https://doi.org/10.1021/bi0503100.

    Article  CAS  PubMed  Google Scholar 

  9. Liu, D., Ke, Z., and Luo, J. (2017) Thiamine deficiency and neurodegeneration: the interplay among oxidative stress, endoplasmic reticulum stress, and autophagy, Mol. Neurobiol., 54, 5440–5448, doi: https://doi.org/10.1007/s12035-016-0079-9.

    Article  CAS  PubMed  Google Scholar 

  10. Bunik, V. I., and Aleshin, V. A. (2017) Analysis of the protein binding sites for thiamin and its derivatives to elucidate the molecular mechanisms of the noncoenzyme action of thiamin (vitamin B1), Studies Nat. Prod. Chem., 53, 375–429, doi: https://doi.org/10.1016/b978-0-444-63930-1.00011-9.

    Article  Google Scholar 

  11. Bunik, V. I. (2014) Benefits of thiamin (vitamin B1) administration in neurodegenerative diseases may be due to both the coenzyme and non-coenzyme roles of thiamin, J. Alzheimers Dis. Parkinsonism, 4, 173, doi: https://doi.org/10.4172/2161-0460.1000173.

    Article  Google Scholar 

  12. Gibson, G. E., Blass, J. P., Beal, M. F., and Bunik, V. (2005) The α-ketoglutarate-dehydrogenase complex: a mediator between mitochondria and oxidative stress in neurodegeneration, Mol. Neurobiol., 31, 43–63, doi: https://doi.org/10.1385/MN:31:1-3:043.

    Article  CAS  PubMed  Google Scholar 

  13. Costantini, A., Giorgi, R., D’Agostino, S., and Pala, M. I. (2013) High-dose thiamine improves the symptoms of Friedreich’s ataxia, BMJ Case Rep., 2013, bcr2013009424, doi: https://doi.org/10.1136/bcr-2013-009424.

    PubMed  PubMed Central  Google Scholar 

  14. Costantini, A., and Fancellu, R. (2016) An open-label pilot study with high-dose thiamine in Parkinson’s disease, Neural Regen. Res., 11, 406–407, doi: https://doi.org/10.4103/1673-5374.179047.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Snodgrass, S. R. (1992) Vitamin neurotoxicity, Mol. Neurobiol., 6, 41–73, doi: https://doi.org/10.1007/bf02935566.

    Article  CAS  PubMed  Google Scholar 

  16. Lonsdale, D. (2006) A review of the biochemistry, metabolism and clinical benefits of thiamin(e) and its derivatives, Evid. Based Complement Alternat. Med., 3, 49–59, doi: https://doi.org/10.1093/ecam/nek009.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Pan, X., Gong, N., Zhao, J., Yu, Z., Gu, F., Chen, J., Sun, X., Zhao, L., Yu, M., Xu, Z., Dong, W., Qin, Y., Fei, G., Zhong, C., and Xu, T. L. (2010) Powerful beneficial effects of benfotiamine on cognitive impairment and β-amyloid deposition in amyloid precursor protein/presenilin-1 transgenic mice, Brain, 133, 1342–1351, doi: https://doi.org/10.1093/brain/awq069.

    Article  PubMed  Google Scholar 

  18. Bettendorff, L., and Wins, P. (1999) Thiamine derivatives in excitable tissues: metabolism, deficiency and neurodegenerative diseases, Rec. Res. Devel. Neurochem., 2, 37–62.

    CAS  Google Scholar 

  19. Gangolf, M., Czerniecki, J., Radermecker, M., Detry, O., Nisolle, M., Jouan, C., Martin, D., Chantraine, F., Lakaye, B., Wins, P., Grisar, T., and Bettendorff, L. (2010) Thiamine status in humans and content of phosphorylated thiamine derivatives in biopsies and cultured cells, PLoS One, 5, e13616, doi: https://doi.org/10.1371/journal.pone.0013616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Frederich, M., Delvaux, D., Gigliobianco, T., Gangolf, M., Dive, G., Mazzucchelli, G., Elias, B., De Pauw, E., Angenot, L., Wins, P., and Bettendorff, L. (2009) Thiaminylated adenine nucleotides. Chemical synthesis, structural characterization and natural occurrence, FEBS J., 276, 3256–3268, doi: https://doi.org/10.1111/j.1742-4658.2009.07040.x.

    Article  CAS  PubMed  Google Scholar 

  21. Bocobza, S. E., Malitsky, S., Araujo, W. L., Nunes-Nesi, A., Meir, S., Shapira, M., Fernie, A. R., and Aharoni, A. (2013) Orchestration of thiamin biosynthesis and central metabolism by combined action of the thiamin pyrophosphate riboswitch and the circadian clock in Arabidopsis, Plant Cell, 25, 288–307, doi: https://doi.org/10.1105/tpc.112.106385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kim, S., Rhee, J. K., Yoo, H. J., Lee, H. J., Lee, E. J., Lee, J. W., Yu, J. H., Son, B. H., Gong, G., Kim, S. B., Singh, S. R., Ahn, S. H., and Chang, S. (2015) Bioinformatic and metabolomic analysis reveals miR-155 regulates thiamine level in breast cancer, Cancer Lett., 357, 488–497, doi: https://doi.org/10.1016/j.canlet.2014.11.058.

    Article  CAS  PubMed  Google Scholar 

  23. McLure, K. G., Takagi, M., and Kastan, M. B. (2004) NAD+ modulates p53 DNA binding specificity and function, Mol. Cell Biol., 24, 9958–9967, doi: 10.1128/MCB.24.22.9958-9967.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lo, P. K., Chen, J. Y., Tang, P. P., Lin, J., Lin, C. H., Su, L. T., Wu, C. H., Chen, T. L., Yang, Y., and Wang, F. F. (2001) Identification of a mouse thiamine transporter gene as a direct transcriptional target for p53, J. Biol. Chem., 276, 37186–37193, doi: https://doi.org/10.1074/jbc.M104701200.

    Article  CAS  PubMed  Google Scholar 

  25. Cooper, J. R., Itokawa, Y., and Pincus, J. H. (1969) Thiamine triphosphate deficiency in subacute necrotizing encephalomyelopathy, Science, 164, 74–75, doi: https://doi.org/10.1126/science.164.3875.74.

    Article  CAS  PubMed  Google Scholar 

  26. Pincus, J. H., Solitare, G. B., and Cooper, J. R. (1976) Thiamine triphosphate levels and histopathology. Correlation in Leigh disease, Arch. Neurol., 33, 759–763, doi: https://doi.org/10.1001/archneur.1976.00500110027005.

    Article  CAS  PubMed  Google Scholar 

  27. Gigliobianco, T., Lakaye, B., Makarchikov, A. F., Wins, P., and Bettendorff, L. (2008) Adenylate kinase-independent thiamine triphosphate accumulation under severe energy stress in Escherichia coli, BMC Microbiol., 8, 16, doi: https://doi.org/10.1186/1471-2180-8-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nghiem, H. O., Bettendorff, L., and Changeux, J. P. (2000) Specific phosphorylation of Torpedo 43K rapsyn by endogenous kinase(s) with thiamine triphosphate as the phosphate donor, FASEB J., 14, 543–554, doi: https://doi.org/10.1096/fasebj.14.3.543.

    Article  CAS  PubMed  Google Scholar 

  29. Von Muralt, A. (1958) The role of thiamine (vitamin B1) in nerve excitation, Exp. Cell Res., 14, 72–79.

    CAS  PubMed  Google Scholar 

  30. Minz, B. (1938) Sur la liberation de la vitamine B1 par le trone isole de nerf pneumogastrique soumis a l’exitation electrique, C. R. Soc. Biol., 127, 1251–1253.

    CAS  Google Scholar 

  31. Itokawa, Y., and Cooper, J. R. (1970) Ion movements and thiamine. II. The release of the vitamin from membrane fragments, Biochim. Biophys. Acta, 196, 274–284, doi: https://doi.org/10.1016/0005-2736(70)90015-5.

    Article  CAS  PubMed  Google Scholar 

  32. Tanaka, T., Yamamoto, D., Sato, T., Tanaka, S., Usui, K., Manabe, M., Aoki, Y., Iwashima, Y., Saito, Y., Mino, Y., and Deguchi, H. (2011) Adenosine thiamine triphosphate (AThTP) inhibits poly(ADP-ribose) polymerase-1 (PARP-1) activity, J. Nutr. Sci. Vitaminol. (Tokyo), 57, 192–196, doi: https://doi.org/10.3177/jnsv.57.192.

    Article  CAS  Google Scholar 

  33. Mkrtchyan, G., Aleshin, V., Parkhomenko, Y., Kaehne, T., Di Salvo, M. L., Parroni, A., Contestabile, R., Vovk, A., Bettendorff, L., and Bunik, V. (2015) Molecular mechanisms of the non-coenzyme action of thiamin in brain: biochemical, structural and pathway analysis, Sci. Rep., 5, 12583, doi: https://doi.org/10.1038/srep12583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rindi, G., Patrini, C., Nauti, A., Bellazzi, R., and Magni, P. (2003) Three thiamine analogues differently alter thiamine transport and metabolism in nervous tissue: an in vivo kinetic study using rats, Metab. Brain Dis., 18, 245–263, doi: https://doi.org/10.1023/B:MEBR.0000020187.98238.58.

    Article  CAS  PubMed  Google Scholar 

  35. Matsuda, T., Tonomura, H., Baba, A., and Iwata, H. (1989) Tissue difference in cellular localization of thiamine phosphate esters, Comp. Biochem. Physiol. B, 94, 405–409, doi: https://doi.org/10.1016/0305-0491(89)90364-7.

    Article  CAS  PubMed  Google Scholar 

  36. Bettendorff, L., Wins, P., and Lesourd, M. (1994) Subcellular localization and compartmentation of thiamine derivatives in rat brain, Biochim. Biophys. Acta, 1222, 1–6, doi: https://doi.org/10.1016/0167-4889(94)90018-3.

    Article  CAS  PubMed  Google Scholar 

  37. Gangolf, M., Wins, P., Thiry, M., El Moualij, B., and Bettendorff, L. (2010) Thiamine triphosphate synthesis in rat brain occurs in mitochondria and is coupled to the respiratory chain, J. Biol. Chem., 285, 583–594, doi: https://doi.org/10.1074/jbc.M109.054379.

    Article  CAS  PubMed  Google Scholar 

  38. Mayr, J. A., Freisinger, P., Schlachter, K., Rolinski, B., Zimmermann, F. A., Scheffner, T., Haack, T. B., Koch, J., Ahting, U., Prokisch, H., and Sperl, W. (2011) Thiamine pyrophosphokinase deficiency in encephalopathic children with defects in the pyruvate oxidation pathway, Am. J. Hum. Genet., 89, 806–812, doi: https://doi.org/10.1016/j.ajhg.2011.11.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Banka, S., de Goede, C., Yue, W. W., Morris, A. A., von Bremen, B., Chandler, K. E., Feichtinger, R. G., Hart, C., Khan, N., Lunzer, V., Matakovic, L., Marquardt, T., Makowski, C., Prokisch, H., Debus, O., Nosaka, K., Sonwalkar, H., Zimmermann, F. A., Sperl, W., and Mayr, J. A. (2014) Expanding the clinical and molecular spectrum of thiamine pyrophosphokinase deficiency: a treatable neurological disorder caused by TPK1 mutations, Mol. Genet. Metab., 113, 301–306, doi: https://doi.org/10.1016/j.ymgme.2014.09.010.

    Article  CAS  PubMed  Google Scholar 

  40. Sano, S., Matsuda, Y., Miyamoto, S., and Nakagawa, H. (1984) Thiamine pyrophosphatase and nucleoside diphosphatase in rat brain, Biochem. Biophys. Res. Commun., 118, 292–298, doi: https://doi.org/10.1016/0006-291X(84)91099-4.

    Article  CAS  PubMed  Google Scholar 

  41. Zebisch, M., Schafer, P., Lauble, P., and Strater, N. (2013) New crystal forms of NTPDase 1 from the bacterium Legionella pneumophila, Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 69, 257–262, doi: https://doi.org/10.1107/S1744309113001504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rindi, G., Ricci, V., Gastaldi, G., and Patrini, C. (1995) Intestinal alkaline phosphatase can transphosphorylate thiamin to thiamin monophosphate during intestinal transport in the rat, Arch. Physiol. Biochem., 103, 33–38, doi: https://doi.org/10.3109/13813459509007560.

    Article  CAS  PubMed  Google Scholar 

  43. Zylka, M. J., Sowa, N. A., Taylor-Blake, B., Twomey, M. A., Herrala, A., Voikar, V., and Vihko, P. (2008) Prostatic acid phosphatase is an ectonucleotidase and suppresses pain by generating adenosine, Neuron, 60, 111–122, doi: https://doi.org/10.1016/j.neuron.2008.08.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hurt, J. K., Coleman, J. L., Fitzpatrick, B. J., Taylor-Blake, B., Bridges, A. S., Vihko, P., and Zylka, M. J. (2012) Prostatic acid phosphatase is required for the antinociceptive effects of thiamine and benfotiamine, PLoS One, 7, e48562, doi: https://doi.org/10.1371/journal.pone.0048562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Eckert, T., and Moebus, W. (1964) On the ATP thiaminediphosphate phosphotransferase activity in nerve tissue. A contribution on the mechanism of nerve impulse conduction, Hoppe Seylers’ Z. Physiol. Chem., 338, 286–288.

    Article  CAS  Google Scholar 

  46. Nishino, K., Itokawa, Y., Nishino, N., Piros, K., and Cooper, J. R. (1983) Enzyme system involved in the synthesis of thiamin triphosphate. I. Purification and characterization of protein-bound thiamin diphosphate:ATP phosphoryltransferase, J. Biol. Chem., 258, 11871–11878.

    CAS  PubMed  Google Scholar 

  47. Shioda, T., Yasuda, S., Yamada, K., Yamada, M., Nakazawa, A., and Kawasaki, T. (1993) Thiamin-triphosphate-synthesizing activity of mutant cytosolic adenylate kinases: significance of Arg-128 for substrate specificity, Biochim. Biophys. Acta, 1161, 230–234, doi: https://doi.org/10.1016/0167-4838(93)90218-G.

    Article  CAS  PubMed  Google Scholar 

  48. Makarchikov, A. F., Wins, P., Janssen, E., Wieringa, B., Grisar, T., and Bettendorff, L. (2002) Adenylate kinase 1 knockout mice have normal thiamine triphosphate levels, Biochim. Biophys. Acta, 1592, 117–121, doi: https://doi.org/10.1016/S0167-4889(02)00277-X.

    Article  CAS  PubMed  Google Scholar 

  49. Shikata, H., Koyama, S., Egi, Y., Yamada, K., and Kawasaki, T. (1989) Cytosolic adenylate kinase catalyzes the synthesis of thiamin triphosphate from thiamin diphosphate, Biochem. Int., 18, 933–941.

    CAS  PubMed  Google Scholar 

  50. Bettendorff, L., Lakaye, B., Kohn, G., and Wins, P. (2014) Thiamine triphosphate: a ubiquitous molecule in search of a physiological role, Metab. Brain Dis., 29, 1069–1082, doi: https://doi.org/10.1007/s11011-014-9509-4.

    Article  CAS  PubMed  Google Scholar 

  51. Gigliobianco, T., Gangolf, M., Lakaye, B., Pirson, B., von Ballmoos, C., Wins, P., and Bettendorff, L. (2013) An alternative role of FoF1-ATP synthase in Escherichia coli: synthesis of thiamine triphosphate, Sci. Rep., 3, 1071, doi: https://doi.org/10.1038/srep01071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Makarchikov, A. F., and Chernikevich, I. P. (1992) Purification and characterization of thiamine triphosphatase from bovine brain, Biochim. Biophys. Acta, 1117, 326–332, doi: https://doi.org/10.1016/0304-4165(92)90032-P.

    Article  CAS  PubMed  Google Scholar 

  53. Bettendorff, L., Michel-Cahay, C., Grandfils, C., De Rycker, C., and Schoffeniels, E. (1987) Thiamine triphosphate and membrane-associated thiamine phosphatases in the electric organ of Electrophorus electricus, J. Neurochem., 49, 495–502, doi: https://doi.org/10.1111/j.1471-4159.1987.tb02891.x.

    Article  CAS  PubMed  Google Scholar 

  54. Suryo Rahmanto, Y., Dunn, L. L., and Richardson, D. R. (2007) Identification of distinct changes in gene expression after modulation of melanoma tumor antigen p97 (melanotransferrin) in multiple models in vitro and in vivo, Carcinogenesis, 28, 2172–2183, doi: https://doi.org/10.1093/carcin/bgm096.

    Article  CAS  PubMed  Google Scholar 

  55. Murata, K. (1982) Actions of two types of thiaminase on thiamin and its analogues, Ann. N. Y. Acad. Sci., 378, 146–156, doi: https://doi.org/10.1111/j.1749-6632.1982.tb31193.x.

    Article  CAS  PubMed  Google Scholar 

  56. Jenkins, A. H., Schyns, G., Potot, S., Sun, G., and Begley, T. P. (2007) A new thiamin salvage pathway, Nat. Chem. Biol., 3, 492–497, doi: https://doi.org/10.1038/nchembio.2007.13.

    Article  CAS  PubMed  Google Scholar 

  57. Petrov, S. A. (1992) Thiamine metabolism in mouse organs and tissues in vivo and in vitro, Fiziol. Zh., 38, 79–75.

    CAS  PubMed  Google Scholar 

  58. Matsuo, T., and Suzuoki, Z. (1969) The occurrence of 4-methylthiazole-5-acetic acid as a thiamine metabolite in rabbit, dog, man and rat, J. Biochem., 65, 953–960.

    Article  CAS  PubMed  Google Scholar 

  59. Nishimune, T., Watanabe, Y., Okazaki, H., and Akai, H. (2000) Thiamin is decomposed due to Anaphe spp. entomophagy in seasonal ataxia patients in Nigeria, J. Nutr., 130, 1625–1628, doi: https://doi.org/10.1093/jn/130.6.1625.

    Article  CAS  PubMed  Google Scholar 

  60. Bos, M., and Kozik, A. (2000) Some molecular and enzymatic properties of a homogeneous preparation of thiaminase I purified from carp liver, J. Protein Chem., 19, 75–84, doi: https://doi.org/10.1023/A:1007043530616.

    Article  CAS  PubMed  Google Scholar 

  61. Vimokesant, S. L., Hilker, D. M., Nakornchai, S., Rungruangsak, K., and Dhanamitta, S. (1975) Effects of betel nut and fermented fish on the thiamin status of north-eastern Thais, Am. J. Clin. Nutr., 28, 1458–1463, doi: https://doi.org/10.1093/ajcn/28.12.1458.

    Article  CAS  PubMed  Google Scholar 

  62. Law, R. H., Zhang, Q., McGowan, S., Buckle, A. M., Silverman, G. A., Wong, W., Rosado, C. J., Langendorf, C. G., Pike, R. N., Bird, P. I., and Whisstock, J. C. (2006) An overview of the serpin superfamily, Genome Biol., 7, 216, doi: https://doi.org/10.1186/gb-2006-7-5-216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Huertas-Gonzalez, N., Hernando-Requejo, V., Luciano-Garcia, Z., and Cervera-Rodilla, J. L. (2015) Wernicke’s encephalopathy, wet beriberi, and polyneuropathy in a patient with folate and thiamine deficiency related to gastric phytobezoar, Case Rep. Neurol. Med., 2015, 624807, doi: https://doi.org/10.1155/2015/624807.

    PubMed  PubMed Central  Google Scholar 

  64. Dutta, B., Huang, W., Molero, M., Kekuda, R., Leibach, F. H., Devoe, L. D., Ganapathy, V., and Prasad, P. D. (1999) Cloning of the human thiamine transporter, a member of the folate transporter family, J. Biol. Chem., 274, 31925–31929, doi: https://doi.org/10.1074/jbc.274.45.31925.

    Article  CAS  PubMed  Google Scholar 

  65. Said, H. M., Balamurugan, K., Subramanian, V. S., and Marchant, J. S. (2004) Expression and functional contribution of hTHTR-2 in thiamin absorption in human intestine, Am. J. Physiol. Gastrointest. Liver Physiol., 286, G491–G498, doi: https://doi.org/10.1152/ajpgi.00361.2003.

    Article  CAS  PubMed  Google Scholar 

  66. Akin, L., Kurtoglu, S., Kendirci, M., Akin, M. A., and Karakukcu, M. (2011) Does early treatment prevent deafness in thiamine-responsive megaloblastic anaemia syndrome? J. Clin. Res. Pediatr. Endocrinol., 3, 36–39, doi: https://doi.org/10.4274/jcrpe.v3i1.08.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Mendoza, R., Miller, A. D., and Overbaugh, J. (2013) Disruption of thiamine uptake and growth of cells by feline leukemia virus subgroup A, J. Virol., 87, 2412–2419, doi: https://doi.org/10.1128/JVI.03203-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ortigoza-Escobar, J. D., Molero-Luis, M., Arias, A., Oyarzabal, A., Darin, N., Serrano, M., Garcia-Cazorla, A., Tondo, M., Hernandez, M., Garcia-Villoria, J., Casado, M., Gort, L., Mayr, J. A., Rodriguez-Pombo, P., Ribes, A., Artuch, R., and Perez-Duenas, B. (2016) Free thiamine is a potential biomarker of thiamine transporter-2 deficiency: a treatable cause of Leigh syndrome, Brain, 139, 31–38, doi: https://doi.org/10.1093/brain/awv342.

    Article  PubMed  Google Scholar 

  69. Alfadhel, M. (2017) Early infantile leigh-like SLC19A3 gene defects have a poor prognosis: report and review, J. Centr. Nerv. Syst. Dis., 9, 1179573517737521, doi: https://doi.org/10.1177/1179573517737521.

    Google Scholar 

  70. Zhang, K., Huentelman, M. J., Rao, F., Sun, E. I., Corneveaux, J. J., Schork, A. J., Wei, Z., Waalen, J., Miramontes-Gonzalez, J. P., Hightower, C. M., Maihofer, A. X., Mahata, M., Pastinen, T., Ehret, G. B., International Consortium for Blood Pressure Genome-Wide Association Studies, Schork, N. J., Eskin, E., Nievergelt, C. M., Saier, M. H., Jr., and O’Connor, D. T. (2014) Genetic implication of a novel thiamine transporter in human hypertension, J. Am. Coll. Cardiol., 63, 1542–1555, doi: https://doi.org/10.1016/j.jacc.2014.01.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Subramanian, V. S., Nabokina, S. M., Lin-Moshier, Y., Marchant, J. S., and Said, H. M. (2013) Mitochondrial uptake of thiamin pyrophosphate: physiological and cell biological aspects, PLoS One, 8, e73503, doi: https://doi.org/10.1371/journal.pone.0073503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Fraccascia, P., Sniekers, M., Casteels, M., and Van Veldhoven, P. P. (2007) Presence of thiamine pyrophosphate in mammalian peroxisomes, BMC Biochem., 8, 10, doi: https://doi.org/10.1186/1471-2091-8-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Nabokina, S. M., Inoue, K., Subramanian, V. S., Valle, J. E., Yuasa, H., and Said, H. M. (2014) Molecular identification and functional characterization of the human colonic thiamine pyrophosphate transporter, J. Biol. Chem., 289, 4405–4416, doi: https://doi.org/10.1074/jbc.M113.528257.

    Article  CAS  PubMed  Google Scholar 

  74. Lemos, C., Faria, A., Meireles, M., Martel, F., Monteiro, R., and Calhau, C. (2012) Thiamine is a substrate of organic cation transporters in Caco-2 cells, Eur. J. Pharmacol., 682, 37–42, doi: https://doi.org/10.1016/j.ejphar.2012.02.028.

    Article  CAS  PubMed  Google Scholar 

  75. Chen, L., Shu, Y., Liang, X., Chen, E. C., Yee, S. W., Zur, A. A., Li, S., Xu, L., Keshari, K. R., Lin, M. J., Chien, H. C., Zhang, Y., Morrissey, K. M., Liu, J., Ostrem, J., Younger, N. S., Kurhanewicz, J., Shokat, K. M., Ashrafi, K., and Giacomini, K. M. (2014) OCT1 is a high-capacity thiamine transporter that regulates hepatic steatosis and is a target of metformin, Proc. Natl. Acad. Sci. USA, 111, 9983–9988, doi: https://doi.org/10.1073/pnas.1314939111.

    Article  CAS  PubMed  Google Scholar 

  76. Kato, K., Mori, H., Kito, T., Yokochi, M., Ito, S., Inoue, K., Yonezawa, A., Katsura, T., Kumagai, Y., Yuasa, H., Moriyama, Y., Inui, K., Kusuhara, H., and Sugiyama, Y. (2014) Investigation of endogenous compounds for assessing the drug interactions in the urinary excretion involving multidrug and toxin extrusion proteins, Pharm. Res., 31, 136–147, doi: https://doi.org/10.1007/s11095-013-1144-y.

    Article  CAS  PubMed  Google Scholar 

  77. Zhao, R., Gao, F., Wang, Y., Diaz, G. A., Gelb, B. D., and Goldman, I. D. (2001) Impact of the reduced folate carrier on the accumulation of active thiamin metabolites in murine leukemia cells, J. Biol. Chem., 276, 1114–1118, doi: https://doi.org/10.1074/jbc.M007919200.

    Article  CAS  PubMed  Google Scholar 

  78. Tanihara, Y., Masuda, S., Sato, T., Katsura, T., Ogawa, O., and Inui, K. (2007) Substrate specificity of MATE1 and MATE2-K, human multidrug and toxin extrusions/H+-organic cation antiporters, Biochem. Pharmacol., 74, 359–371, doi: https://doi.org/10.1016/j.bcp.2007.04.010.

    Article  CAS  PubMed  Google Scholar 

  79. Liu, S., Huang, H., Lu, X., Golinski, M., Comesse, S., Watt, D., Grossman, R. B., and Moscow, J. A. (2003) Down-regulation of thiamine transporter THTR-2 gene expression in breast cancer and its association with resistance to apoptosis, Mol. Cancer Res., 1, 665–673.

    CAS  PubMed  Google Scholar 

  80. Liu, X., Lam, E. K., Wang, X., Zhang, J., Cheng, Y. Y., Lam, Y. W., Ng, E. K., Yu, J., Chan, F. K., Jin, H., and Sung, J. J. (2009) Promoter hypermethylation mediates downregulation of thiamine receptor SLC19A3 in gastric cancer, Tumour Biol., 30, 242–248, doi: 10.1159/000243767.

    Article  CAS  PubMed  Google Scholar 

  81. Ikehata, M., Ueda, K., and Iwakawa, S. (2012) Different involvement of DNA methylation and histone deacetylation in the expression of solute-carrier transporters in 4 colon cancer cell lines, Biol. Pharm. Bull., 35, 301–307, doi: https://doi.org/10.1248/bpb.35.301.

    Article  CAS  PubMed  Google Scholar 

  82. Zastre, J. A., Sweet, R. L., Hanberry, B. S., and Ye, S. (2013) Linking vitamin B1 with cancer cell metabolism, Cancer Metab., 1, 16, doi: https://doi.org/10.1186/2049-3002-1-16.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Mkrtchyan, G., Graf, A., Bettendorff, L., and Bunik, V. (2016) Cellular thiamine status is coupled to function of mitochondrial 2-oxoglutarate dehydrogenase, Neurochem. Int., 101, 66–75, doi: https://doi.org/10.1016/j.neuint.2016.10.009.

    Article  CAS  PubMed  Google Scholar 

  84. Daily, A., Liu, S., Bae, Y., Bhatnagar, S., and Moscow, J. A. (2011) Linear chain PEGylated recombinant Bacillus thiaminolyticus thiaminase I enzyme has growth inhibitory activity against lymphoid leukemia cell lines, Mol. Cancer Ther., 10, 1563–1570, doi: https://doi.org/10.1158/1535-7163.MCT-11-0003.

    Article  CAS  PubMed  Google Scholar 

  85. Liu, S., Stromberg, A., Tai, H. H., and Moscow, J. A. (2004) Thiamine transporter gene expression and exogenous thiamine modulate the expression of genes involved in drug and prostaglandin metabolism in breast cancer cells, Mol. Cancer Res., 2, 477–487.

    CAS  PubMed  Google Scholar 

  86. Liang, X., Chien, H. C., Yee, S. W., Giacomini, M. M., Chen, E. C., Piao, M., Hao, J., Twelves, J., Lepist, E. I., Ray, A. S., and Giacomini, K. M. (2015) Metformin is a substrate and inhibitor of the human thiamine transporter, THTR-2 (SLC19A3), Mol. Pharm., 12, 4301–4310, doi: https://doi.org/10.1021/acs.molpharmaceut.5b00501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kimura, N., Masuda, S., Tanihara, Y., Ueo, H., Okuda, M., Katsura, T., and Inui, K. (2005) Metformin is a superior substrate for renal organic cation transporter OCT2 rather than hepatic OCT1, Drug Metab. Pharmacokinet., 20, 379–386, doi: https://doi.org/10.2133/dmpk.20.379.

    Article  CAS  PubMed  Google Scholar 

  88. Liang, X., Yee, S. W., Chien, H. C., Chen, E. C., Luo, Q., Zou, L., Piao, M., Mifune, A., Chen, L., Calvert, M. E., King, S., Norheim, F., Abad, J., Krauss, R. M., and Giacomini, K. M. (2018) Organic cation transporter 1 (OCT1) modulates multiple cardiometabolic traits through effects on hepatic thiamine content, PLoS Biol., 16, e2002907, doi: https://doi.org/10.1371/journal.pbio.2002907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Umehara, K. I., Iwatsubo, T., Noguchi, K., and Kamimura, H. (2007) Comparison of the kinetic characteristics of inhibitory effects exerted by biguanides and H2-blockers on human and rat organic cation transporter- mediated transport: insight into the development of drug candidates, Xenobiotica, 37, 618–634, doi: https://doi.org/10.1080/00498250701397705.

    Article  CAS  PubMed  Google Scholar 

  90. Osiezagha, K., Ali, S., Freeman, C., Barker, N. C., Jabeen, S., Maitra, S., Olagbemiro, Y., Richie, W., and Bailey, R. K. (2013) Thiamine deficiency and delirium, Innov. Clin. Neurosci., 10, 26–32.

    PubMed  PubMed Central  Google Scholar 

  91. Miralles-Linares, F., Puerta-Fernandez, S., Bernal-Lopez, M. R., Tinahones, F. J., Andrade, R. J., and Gomez-Huelgas, R. (2012) Metformin-induced hepatotoxicity, Diabetes Care, 35, e21, doi: https://doi.org/10.2337/dc11-2306.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Kalantar-Zadeh, K., and Kovesdy, C. P. (2016) Should restrictions be relaxed for metformin use in chronic kidney disease? No, we should never again compromise safety! Diabetes Care, 39, 1281–1286, doi: https://doi.org/10.2337/dc15-2327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Toyama, K., Yonezawa, A., Masuda, S., Osawa, R., Hosokawa, M., Fujimoto, S., Inagaki, N., Inui, K., and Katsura, T. (2012) Loss of multidrug and toxin extrusion 1 (MATE1) is associated with metformin-induced lactic acidosis, Br. J. Pharmacol., 166, 1183–1191, doi: https://doi.org/10.1111/j.1476-5381.2012.01853.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Vecchio, S., and Protti, A. (2011) Metformin-induced lactic acidosis: no one left behind, Crit. Care, 15, 107, doi: https://doi.org/10.1186/cc9404.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Amrein, K., Ribitsch, W., Otto, R., Worm, H. C., and Stauber, R. E. (2011) Severe lactic acidosis reversed by thiamine within 24 hours, Crit. Care, 15, 457, doi: https://doi.org/10.1186/cc10495.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Godo, S., Yoshida, Y., Fujita, M., Kudo, D., Nomura, R., Shimokawa, H., and Kushimoto, S. (2017) The dramatic recovery of a patient with biguanide-associated severe lactic acidosis following thiamine supplementation, Intern. Med., 56, 455–459, doi: https://doi.org/10.2169/internalmedicine.56.7754.

    Article  PubMed  PubMed Central  Google Scholar 

  97. McGarvey, C., Franconi, C., Prentice, D., and Bynevelt, M. (2018) Metformin-induced encephalopathy: the role of thiamine, Intern. Med. J., 48, 194–197, doi: https://doi.org/10.1111/imj.13693.

    Article  PubMed  Google Scholar 

  98. Costantini, A. (2018) High-dose thiamine and essential tremor, BMJ Case Rep., 2018, bcr-2017-223945, doi: https://doi.org/10.1136/bcr-2017-223945.

    Article  PubMed  Google Scholar 

  99. Page, G. L., Laight, D., and Cummings, M. H. (2011) Thiamine deficiency in diabetes mellitus and the impact of thiamine replacement on glucose metabolism and vascular disease, Int. J. Clin. Pract., 65, 684–690, doi: https://doi.org/10.1111/j.1742-1241.2011.02680.x.

    Article  CAS  PubMed  Google Scholar 

  100. Moraes, J. O., Rodrigues, S. D. C., Pereira, L. M., Medeiros, R. C. N., de Cordova, C. A. S., and de Cordova, F. M. (2018) Amprolium exposure alters mice behavior and metabolism in vivo, Animal Model Exp. Med., 1, 272–281, doi: https://doi.org/10.1002/ame2.12040.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Singh, V., Peng, C. S., Li, D., Mitra, K., Silvestre, K. J., Tokmakoff, A., and Essigmann, J. M. (2014) Direct observation of multiple tautomers of oxythiamine and their recognition by the thiamine pyrophosphate riboswitch, ACS Chem. Biol., 9, 227–236, doi: https://doi.org/10.1021/cb400581f.

    Article  CAS  PubMed  Google Scholar 

  102. Hirsch, J. A., and Parrott, J. (2012) New considerations on the neuromodulatory role of thiamine, Pharmacology, 89, 111–116, doi: https://doi.org/10.1159/000336339.

    Article  CAS  PubMed  Google Scholar 

  103. Aleshin, V. A., Artiukhov, A. V., Oppermann, H., Kazantsev, A. V., Lukashev, N. V., and Bunik, V. I. (2015) Mitochondrial impairment may increase cellular NAD(P)H:resazurin oxidoreductase activity, perturbing the NAD(P)H-based viability assays, Cells, 4, 427–451, doi: https://doi.org/10.3390/cells4030427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Fukui, S., Ohishi, N., Kishimotostakamizaw, A., and Hamazima, Y. (1965) Formation of “thiaminosuccinic acid” as an intermediate in the transformation of oxythiamine to thiamine by a thiamineless mutant of Escherichia coli, J. Biol. Chem., 240, 1315–1321.

    CAS  PubMed  Google Scholar 

  105. Goyer, A., Hasnain, G., Frelin, O., Ralat, M. A., Gregory, J. F., 3rd, and Hanson, A. D. (2013) A cross-kingdom Nudix enzyme that pre-empts damage in thiamin metabolism, Biochem. J., 454, 533–542, doi: https://doi.org/10.1042/BJ20130516.

    Article  CAS  PubMed  Google Scholar 

  106. Zhang, F., Masania, J., Anwar, A., Xue, M., Zehnder, D., Kanji, H., Rabbani, N., and Thornalley, P. J. (2016) The uremic toxin oxythiamine causes functional thiamine deficiency in end-stage renal disease by inhibiting transketolase activity, Kidney Int., 90, 396–403, doi: https://doi.org/10.1016/j.kint.2016.03.010.

    Article  CAS  PubMed  Google Scholar 

  107. Linster, C. L., Van Schaftingen, E., and Hanson, A. D. (2013) Metabolite damage and its repair or pre-emption, Nat. Chem. Biol., 9, 72–80, doi: https://doi.org/10.1038/nchembio.1141.

    Article  CAS  PubMed  Google Scholar 

  108. Nemeria, N. S., Shome, B., DeColli, A. A., Heflin, K., Begley, T. P., Meyers, C. F., and Jordan, F. (2016) Competence of thiamin diphosphate-dependent enzymes with 2′-methoxythiamin diphosphate derived from bacimethrin, a naturally occurring thiamin anti-vitamin, Biochemistry, 55, 1135–1148, doi: https://doi.org/10.1021/acs.biochem.5b01300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Agyei-Owusu, K., and Leeper, F. J. (2009) Thiamin diphosphate in biological chemistry: analogues of thiamin diphosphate in studies of enzymes and riboswitches, FEBS J., 276, 2905–2916, doi: https://doi.org/10.1111/j.1742-4658.2009.07018.x.

    Article  CAS  PubMed  Google Scholar 

  110. Iwadate, D., Sato, K., Kanzaki, M., Komiyama, C., Watanabe, C., Eguchi, T., and Uesaka, Y. (2017) Thiamine deficiency in metronidazole-induced encephalopathy: a metabolic correlation? J. Neurol. Sci., 379, 324–326, doi: https://doi.org/10.1016/j.jns.2017.06.042.

    Article  PubMed  Google Scholar 

  111. Ding, B. C., Whetstine, J. R., Witt, T. L., Schuetz, J. D., and Matherly, L. H. (2001) Repression of human reduced folate carrier gene expression by wild type p53, J. Biol. Chem., 276, 8713–8719, doi: https://doi.org/10.1074/jbc.M005248200.

    Article  CAS  PubMed  Google Scholar 

  112. Yang, Z., Ge, J., Yin, W., Shen, H., Liu, H., and Guo, Y. (2004) The expression of p53, MDM2 and Ref1 gene in cultured retina neurons of SD rats treated with vitamin B1 and/or elevated pressure, Yan Ke Xue Bao, 20, 259–263.

    CAS  PubMed  Google Scholar 

  113. Chornyy, S., Parkhomenko, Y., and Chorna, N. (2017) Thiamine antagonists trigger p53-dependent apoptosis in differentiated SH-SY5Y cells, Sci. Rep., 7, 10632, doi: https://doi.org/10.1038/s41598-017-10878-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Pagadala, N. S., Bjorndahl, T. C., Blinov, N., Kovalenko, A., and Wishart, D. S. (2013) Molecular docking of thiamine reveals similarity in binding properties between the prion protein and other thiamine-binding proteins, J. Mol. Model., 19, 5225–5235, doi: 10.1007/s00894-013-1979-5.

    Article  CAS  PubMed  Google Scholar 

  115. Perez-Pineiro, R., Bjorndahl, T. C., Berjanskii, M. V., Hau, D., Li, L., Huang, A., Lee, R., Gibbs, E., Ladner, C., Dong, Y. W., Abera, A., Cashman, N. R., and Wishart, D. S. (2011) The prion protein binds thiamine, FEBS J., 278, 4002–4014, doi: https://doi.org/10.1111/j.1742-4658.2011.08304.x.

    Article  CAS  PubMed  Google Scholar 

  116. Pulkkinen, V., Manson, M. L., Safholm, J., Adner, M., and Dahlen, S. E. (2012) The bitter taste receptor (TAS2R) agonists denatonium and chloroquine display distinct patterns of relaxation of the guinea pig trachea, Am. J. Physiol. Lung Cell Mol. Physiol., 303, L956–L966, doi: https://doi.org/10.1152/ajplung.00205.2012.

    Article  CAS  PubMed  Google Scholar 

  117. Lossow, K., Hubner, S., Roudnitzky, N., Slack, J. P., Pollastro, F., Behrens, M., and Meyerhof, W. (2016) Comprehensive analysis of mouse bitter taste receptors reveals different molecular receptive ranges for orthologous receptors in mice and humans, J. Biol. Chem., 291, 15358–15377, doi: https://doi.org/10.1074/jbc.M116.718544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Lucas, J. I., and Marin, I. (2007) A new evolutionary paradigm for the Parkinson disease gene DJ-1, Mol. Biol. Evol., 24, 551–561, doi: https://doi.org/10.1093/molbev/msl186.

    Article  CAS  PubMed  Google Scholar 

  119. Mkrtchyan, G. V. (2017) Molecular Mechanisms of the Action of Thiamine (Vitamin B1) in Nervous Tissue [in Russian], Lomonosov Moscow State University, Moscow.

    Google Scholar 

  120. Tsepkova, P. M., Artiukhov, A. V., Boyko, A. I., Aleshin, V. A., Mkrtchyan, G. V., Zvyagintseva, M. A., Ryabov, S. I., Ksenofontov, A. L., Baratova, L. A., Graf, A. V., and Bunik, V. I. (2017) Thiamine induces long-term changes in amino acid profiles and activities of 2-oxoglutarate and 2-oxoadipate dehydrogenases in rat brain, Biochemistry (Moscow), 82, 723–736, doi: https://doi.org/10.1134/S0006297917060098.

    Article  CAS  Google Scholar 

  121. Petrov, S. A., and Donesko, E. V. (1989) Effect of thiamine and its metabolites on aspartate and alanine aminotransferase activity in the body of white rats and in donor blood, Fiziol. Zh., 35, 94–96.

    CAS  PubMed  Google Scholar 

  122. Singh, M., Kaur, M., Kukreja, H., Chugh, R., Silakari, O., and Singh, D. (2013) Acetylcholinesterase inhibitors as Alzheimer therapy: from nerve toxins to neuroprotection, Eur. J. Med. Chem., 70, 165–188, doi: https://doi.org/10.1016/j.ejmech.2013.09.050.

    Article  CAS  PubMed  Google Scholar 

  123. Lonsdale, D. (2004) Thiamine tetrahydrofurfuryl disulfide: a little known therapeutic agent, Med. Sci. Monit., 10, RA199–RA203.

    CAS  PubMed  Google Scholar 

  124. Tapias, V., Jainuddin, S., Ahuja, M., Stack, C., Elipenahli, C., Vignisse, J., Gerges, M., Starkova, N., Xu, H., Starkov, A. A., Bettendorff, L., Hushpulian, D. M., Smirnova, N. A., Gazaryan, I. G., Kaidery, N. A., Wakade, S., Calingasan, N. Y., Thomas, B., Gibson, G. E., Dumont, M., and Beal, M. F. (2018) Benfotiamine treatment activates the Nrf2/ARE pathway and is neuroprotective in a transgenic mouse model of tauopathy, Hum. Mol. Genet., 27, 2874–2892, doi: https://doi.org/10.1093/hmg/ddy201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Gibson, G. E., Hirsch, J. A., Fonzetti, P., Jordan, B. D., Cirio, R. T., and Elder, J. (2016) Vitamin B1 (thiamine) and dementia, Ann. N. Y. Acad. Sci., 1367, 21–30, doi: https://doi.org/10.1111/nyas.13031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Volvert, M. L., Seyen, S., Piette, M., Evrard, B., Gangolf, M., Plumier, J. C., and Bettendorff, L. (2008) Benfotiamine, a synthetic S-acyl thiamine derivative, has different mechanisms of action and a different pharmacological profile than lipid-soluble thiamine disulfide derivatives, BMC Pharmacol., 8, 10, doi: https://doi.org/10.1186/1471-2210-8-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Vignisse, J., Sambon, M., Gorlova, A., Pavlov, D., Caron, N., Malgrange, B., Shevtsova, E., Svistunov, A., Anthony, D. C., Markova, N., Bazhenova, N., Coumans, B., Lakaye, B., Wins, P., Strekalova, T., and Bettendorff, L. (2017) Thiamine and benfotiamine prevent stress-induced suppression of hippocampal neurogenesis in mice exposed to predation without affecting brain thiamine diphosphate levels, Mol. Cell Neurosci., 82, 126–136, doi: https://doi.org/10.1016/j.mcn.2017.05.005.

    Article  CAS  PubMed  Google Scholar 

  128. Mouton-Liger, F., Rebillat, A. S., Gourmaud, S., Paquet, C., Leguen, A., Dumurgier, J., Bernadelli, P., Taupin, V., Pradier, L., Rooney, T., and Hugon, J. (2015) PKR downregulation prevents neurodegeneration and β-amyloid production in a thiamine-deficient model, Cell Death Dis., 6, e1594, doi: https://doi.org/10.1038/cddis.2014.552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Sun, X. J., Zhao, L., Zhao, N., Pan, X. L., Fei, G. Q., Jin, L. R., and Zhong, C. J. (2012) Benfotiamine prevents increased β-amyloid production in HEK cells induced by high glucose, Neurosci. Bull., 28, 561–566, doi: https://doi.org/10.1007/s12264-012-1264-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Zhang, X., Hernandez, I., Rei, D., Mair, W., Laha, J. K., Cornwell, M. E., Cuny, G. D., Tsai, L. H., Steen, J. A., and Kosik, K. S. (2013) Diaminothiazoles modify Tau phosphorylation and improve the tauopathy in mouse models, J. Biol. Chem., 288, 22042–22056, doi: https://doi.org/10.1074/jbc.M112.436402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Markova, N., Bazhenova, N., Anthony, D. C., Vignisse, J., Svistunov, A., Lesch, K. P., Bettendorff, L., and Strekalova, T. (2017) Thiamine and benfotiamine improve cognition and ameliorate GSK-3β-associated stress-induced behaviours in mice, Prog. Neuropsychopharmacol. Biol. Psychiatry, 75, 148–156, doi: https://doi.org/10.1016/j.pnpbp.2016.11.001.

    Article  CAS  PubMed  Google Scholar 

  132. Gold, M., Hauser, R. A., and Chen, M. F. (1998) Plasma thiamine deficiency associated with Alzheimer’s disease but not Parkinson’s disease, Metab. Brain Dis., 13, 43–53, doi: https://doi.org/10.1023/A:1020678912330.

    Article  CAS  PubMed  Google Scholar 

  133. Pan, X., Fei, G., Lu, J., Jin, L., Pan, S., Chen, Z., Wang, C., Sang, S., Liu, H., Hu, W., Zhang, H., Wang, H., Wang, Z., Tan, Q., Qin, Y., Zhang, Q., Xie, X., Ji, Y., Cui, D., Gu, X., Xu, J., Yu, Y., and Zhong, C. (2016) Measurement of blood thiamine metabolites for Alzheimer’s disease diagnosis, EBioMedicine, 3, 155–162, doi: https://doi.org/10.1016/j.ebiom.2015.11.039.

    Article  PubMed  Google Scholar 

  134. Pan, X., Sang, S., Fei, G., Jin, L., Liu, H., Wang, Z., Wang, H., and Zhong, C. (2017) Enhanced activities of blood thiamine diphosphatase and monophosphatase in Alzheimer’s disease, PLoS One, 12, e0167273, doi: https://doi.org/10.1371/journal.pone.0167273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Jimenez-Jimenez, F. J., Molina, J. A., Hernanz, A., Fernandez-Vivancos, E., de Bustos, F., Barcenilla, B., Gomez-Escalonilla, C., Zurdo, M., Berbel, A., and Villanueva, C. (1999) Cerebrospinal fluid levels of thiamine in patients with Parkinson’s disease, Neurosci. Lett., 271, 33–36, doi: https://doi.org/10.1016/S0304-3940(99)00515-7.

    Article  CAS  PubMed  Google Scholar 

  136. Mizuno, Y., Matuda, S., Yoshino, H., Mori, H., Hattori, N., and Ikebe, S. (1994) An immunohistochemical study on α-ketoglutarate dehydrogenase complex in Parkinson’s disease, Ann. Neurol., 35, 204–210, doi: https://doi.org/10.1002/ana.410350212.

    Article  CAS  PubMed  Google Scholar 

  137. Haglin, L., Johansson, I., Forsgren, L., and Backman, L. (2017) Intake of vitamin B before onset of Parkinson’s disease and atypical parkinsonism and olfactory function at the time of diagnosis, Eur. J. Clin. Nutr., 71, 97–102, doi: https://doi.org/10.1038/ejcn.2016.181.

    Article  CAS  PubMed  Google Scholar 

  138. Boyko, A., Ksenofontov, A., Ryabov, S., Baratova, L., Graf, A., and Bunik, V. (2017) Delayed influence of spinal cord injury on the amino acids of NO. metabolism in rat cerebral cortex is attenuated by thiamine, Front. Med. (Lausanne), 4, 249, doi: https://doi.org/10.3389/fmed.2017.00249.

    Article  Google Scholar 

  139. Mkrtchyan, G. V., Ucal, M., Mullebner, A., Dumitrescu, S., Kames, M., Moldzio, R., Molcanyi, M., Schaefer, S., Weidinger, A., Schaefer, U., Hescheler, J., Duvigneau, J. C., Redl, H., Bunik, V. I., and Kozlov, A. V. (2018) Thiamine preserves mitochondrial function in a rat model of traumatic brain injury, preventing inactivation of the 2-oxoglutarate dehydrogenase complex, Biochim. Biophys. Acta Bioenerg., 1859, 925–931, doi: https://doi.org/10.1016/j.bbabio.2018.05.005.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Funding. This work is supported by the Russian Foundation for Basic Research (grant no. 18-34-00235).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Bunik.

Ethics declarations

Conflict of interest. The authors declare no conflict of interest.

Ethical statement. This paper does not describe non-published studies of the authors performed with human or animal subjects.

Additional information

Published in Russian in Biokhimiya, 2019, Vol. 84, No. 8, pp. 1051–1075.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleshin, V.A., Mkrtchyan, G.V. & Bunik, V.I. Mechanisms of Non-coenzyme Action of Thiamine: Protein Targets and Medical Significance. Biochemistry Moscow 84, 829–850 (2019). https://doi.org/10.1134/S0006297919080017

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297919080017

Keywords

Navigation