Skip to main content
Log in

Biological Role of Actin Isoforms in Mammalian Cells

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Actin plays an important role in cellular adhesion, muscle and non-muscle contractility, migration, polarization, mitosis, and meiosis. Investigation of specific mechanisms underlying these processes is essential not only for fundamental research but also for clinical applications, since modulations of actin isoforms are directly or indirectly correlate with severe pathologies. In this review we summarize the isoform-specific functions of actin associated with adhesion structures, motility and division of normal and tumor cells; alterations of the expression and structural organization of actin isoforms in normal and tumor cells. Selective regulation of cytoplasmic β- or γ-actin expression determines functional diversity between isoforms: β-actin plays the predominant role in contraction and intercellular adhesion, and γ-actin is responsible for the cellular plasticity and motility. Similar data were obtained in different epithelial and mesenchymal neoplastic cell cultures, as well as in immunomorphological comparison of normal human tissues with tumor analogues. Reorganization of the actin cytoskeleton and cell–cell contacts is essential for proliferation control and acquisition of invasiveness in epithelial tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pollard, T. D., and Cooper, J. A. (2009) Actin, a central player in cell shape and movement, Science, 326, 12081212, doi: https://doi.org/10.1126/science.1175862.

    Article  CAS  Google Scholar 

  2. Vandekerckhove, J., and Weber, K. (1978) At least six different actins are expressed in a higher mammal: an analysis based on the amino acid sequence of the amino-terminal tryptic peptide, J. Mol. Biol., 126, 783–802. doi: https://doi.org/10.1016/0022-2836(78)90020-7.

    Article  CAS  PubMed  Google Scholar 

  3. Kabsch, W., and Vandekerckhove, J. (1992) Structure and function of actin, Annu. Rev. Biophys. Biomol. Struct., 21, 49–76. doi: https://doi.org/10.1146/annurevbb.21.060192.000405.

    Article  CAS  PubMed  Google Scholar 

  4. Gunning, P., Ponte, P., Kedes, L., Eddy, R., and Shows, T. (1984) Chromosomal location of the coexpressed human skeletal and cardiac actin genes, Proc. Natl. Acad. Sci. USA, 81, 1813–1817. doi: https://doi.org/10.1073/pnas.81.6.1813.

    Article  CAS  PubMed  Google Scholar 

  5. Hightower, R. C., and Meagher, R. B. (1986) The molecular evolution of actin, Genetics, 114, 315–332.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Garrels, J. I., and Gibson, W. (1976) Identification and characterization of multiple forms of actin, Cell, 9, 793805, doi: https://doi.org/10.1016/0092-8674(76)90142-2.

    Article  Google Scholar 

  7. Rubenstein, P. A. (1990) The functional importance of multiple actin isoforms, Bioessays, 12, 309–315. doi: https://doi.org/10.1002/bies.950120702.

    Article  CAS  PubMed  Google Scholar 

  8. Schutt, C. E., Myslik, J. C., Rozycki, M. D., Goonesekere, N. C., and Lindberg, U. (1993) The structure of crystalline profilin-beta-actin, Nature, 365, 810–816. doi: https://doi.org/10.1038/365810a0.

    Article  CAS  PubMed  Google Scholar 

  9. Rubenstein, P. A., and Martin, D. J. (1983) NH2-terminal processing of actin in mouse L-cells in vivo, J. Biol. Chem., 258, 3961–3966.

    CAS  PubMed  Google Scholar 

  10. Drazic, A., Aksnes, H., Marie, M., Boczkowska, M., Varland, S., Timmerman, E., Foyn, H., Glomnes, N., Rebowski, G., Impens, F., Gevaert, K., Dominguez, R., and Arnesen, T. (2018) NAA80 is actin’s N-terminal acetyl-transferase and regulates cytoskeleton assembly and cell motility, Proc. Natl. Acad. Sci. USA, 115, 4399–4404. doi: https://doi.org/10.1073/pnas.1718336115.

    Article  CAS  PubMed  Google Scholar 

  11. Goris, M., Magin, R. S., Foyn, H., Myklebust, L. M., Varland, S., Ree, R., Drazic, A., Bhambra, P, Stove, S. I., Baumann, M., Haug, B. E., Marmorstein, R., and Arnesen, T. (2018) Structural determinants and cellular environment define processed actin as the sole substrate of the N-terminal acetyltransferase NAA80, Proc. Natl. Acad. Sci. USA, 115, 4405–4410. doi: https://doi.org/10.1073/pnas.1719251115.

    Article  CAS  PubMed  Google Scholar 

  12. Bergeron, S. E., Zhu, M., Thiem, S. M., Friderici, K. H., and Rubenstein, P. A. (2010) Ion-dependent polymerization differences between mammalian beta- and gammanonmuscle actin isoforms, J. Biol. Chem., 285, 1608716095, doi https://doi.org/10.1074/jbc.M110.110130.

    Article  CAS  Google Scholar 

  13. Sheterline, P., Clayton, J., and Sparrow, J. (1995) Actin, Protein Profile, 2, 1–103.

    CAS  PubMed  Google Scholar 

  14. Muller, M., Diensthuber, R. P, Chizhov, I., Claus, P., Heissler, S. M., Preller, M., Taft, M. H., and Manstein, D. J. (2013) Distinct functional interactions between actin iso-forms and nonsarcomeric myosins, PLoS One, 8, e70636, doi: https://doi.org/10.1371/journal.pone.0070636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Larsson, H., and Lindberg, U. (1988) The effect of divalent cations on the interaction between calf spleen profilin and different actins, Biochim. Biophys. Acta, 953, 95–105. doi: https://doi.org/10.1016/0167-4838(88)90013-1.

    Article  CAS  PubMed  Google Scholar 

  16. Ohshima, S., Abe, H., and Obinata, T. (1989) Isolation of profilin from embryonic chicken skeletal muscle and evaluation of its interaction with different actin isoforms, J. Biochem., 5, 855–857.

    Article  Google Scholar 

  17. Weber, A., Nachmias, V. T, Pennise, C. R., Pring, M., and Safer, D. (1992) Interaction of thymosin beta 4 with muscle and platelet actin: implications for actin sequestration in resting platelets, Biochemistry, 31, 6179–6185. doi: https://doi.org/10.1021/bi00142a002.

    Article  CAS  PubMed  Google Scholar 

  18. Namba, Y., Ito, M., Zu, Y, Shigesada, K., and Maruyama, K. (1992) Human T cell L-plastin bundles actin filaments in a calcium-dependent manner, J. Biochem., 112, 503507.

    Article  Google Scholar 

  19. Shuster, C. B., and Herman, I. M. (1995) Indirect association of ezrin with F-actin: isoform specificity and calcium sensitivity, J. Cell Biol., 128, 837–848. doi: https://doi.org/10.1083/jcb.128.5.837.

    Article  CAS  PubMed  Google Scholar 

  20. Yao, X., Cheng, L., and Forte, J. G. (1996) Biochemical characterization of ezrin—actin interaction, J. Biol. Chem., 271, 7224–7229. doi: https://doi.org/10.1074/jbc.271.12.7224.

    Article  CAS  PubMed  Google Scholar 

  21. Shuster, C. B., Lin, A. Y, Nayak, R., and Herman, I. M. (1996) Beta cap73: a novel beta actin-specific binding protein, Cell. Motil. Cytoskeleton, 35, 175–187. doi: 10.1002/(SICI)1097-0169(1996)35:3<175::AID-CM1>3.0.CO;2-8.

    Article  CAS  PubMed  Google Scholar 

  22. Winder, S. J., Hemmings, L., Maciver, S. K., Bolton, S. J., Tinsley, J. M., Davies, K. E., Critchley, D. R., and Kendrick-Jones, J. (1995) Utrophin actin binding domain: analysis of actin binding and cellular targeting, J. Cell Sci., 108 (Pt. 1), 63–71.

    CAS  PubMed  Google Scholar 

  23. Tzima, E., Trotter, P. J., Orchard, M. A., and Walker, J. H. (2000) Annexin V relocates to the platelet cytoskeleton upon activation and binds to a specific isoform of actin, Eur. J. Biochem., 267, 4720–4730. doi: https://doi.org/10.1006/excr.1999.4553.

    Article  CAS  PubMed  Google Scholar 

  24. Gunning, P., Weinberger, R., Jeffrey, P., and Hardeman, E. (1998) Isoform sorting and the creation of intracellular compartments, Annu. Rev. Cell Dev. Biol., 14, 339–372. doi: https://doi.org/10.1146/annurev.cellbio.14.1.339.

    Article  CAS  PubMed  Google Scholar 

  25. Manstein, D. J., and Mulvihill, D. P. (2016) Tropomyosinmediated regulation of cytoplasmic myosins, Traffic, 17, 872–877. doi: https://doi.org/10.1111/tra.12399.

    Article  CAS  PubMed  Google Scholar 

  26. Von der Ecken, J., Heissler, S. M., Pathan-Chhatbar, S., Manstein, D. J., Raunser, S., and Cryo, E. M. (2016) Structure of a human cytoplasmic actomyosin complex at near-atomic resolution, Nature, 534, 724–728. doi: https://doi.org/10.1038/nature18295.

    Article  CAS  PubMed  Google Scholar 

  27. Gunning, P., Mohun, T., Ng, S. Y., Ponte, P., and Kedes, L. (1984) Evolution of the human sarcomeric-actin genes: evidence for units of selection within the 3’-untranslated regions of the mRNAs, J. Mol. Evol., 20, 202–214. doi: https://doi.org/10.1007/BF02104727.

    Article  CAS  PubMed  Google Scholar 

  28. Yaffe, D., Nudel, U., Mayer, Y, and Neuman, S. (1985) Highly conserved sequences in the 3’ untranslated region of mRNAs coding for homologous proteins in distantly related species, Nucleic Acids Res., 13, 3723–3737. doi: https://doi.org/10.1093/nar/13.10.3723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Treisman, R., Alberts, A. S., and Sahai, E. (1998) Regulation of SRF activity by Rho family GTPases, Cold Spring Harb. Symp. Quant. Biol., 63, 643–651. doi:https://doi.org/10.1101/sqb.1998.63.643.

    Article  CAS  PubMed  Google Scholar 

  30. Posern, G., and Treisman, R. (2006) Actin’ together: serum response factor, its cofactors and the link to signal transduction, Trends Cell Biol., 16, 588–596. doi: https://doi.org/10.1016/j.tcb.2006.09.008.

    Article  CAS  PubMed  Google Scholar 

  31. Singer, R. H. (1992) The cytoskeleton and mRNA localization, Curr Opin. Cell Biol., 4, 15–19. doi: https://doi.org/10.1016/0955-0674(92)90053-F.

    Article  CAS  PubMed  Google Scholar 

  32. Gunning, P., Hardeman, E., Wade, R., Ponte, P., Bains, W., Blau, H. M., and Kedes, L. (1987) Differential patterns of transcript accumulation during human myogenesis, Mol. Cell. Biol, 197, 4100–4114. doi: https://doi.org/10.1128/MCB.7.11.4100.

    Article  Google Scholar 

  33. Latham, V. M., Kislauskis, E. H., Singer, R. H., and Ross, A. F. (1994) Beta-actin mRNA localization is regulated by signal transduction mechanisms, J. Cell Biol., 126, 12111219, doi: https://doi.org/10.1083/jcb.126.5.1211.

    Article  Google Scholar 

  34. Oleynikov, Y., and Singer, R. H. (2003) Real-time visualization of ZBP1 association with beta-actin mRNA during transcription and localization, Curr. Biol., 13, 199–207. doi: https://doi.org/10.1016/S0960-9822(03)00044-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kislauskis, E. H., Li, Z., Singer, R. H., and Taneja, K. L. (1993) Isoform-specific 3’-untranslated sequences sort alpha-cardiac and beta-cytoplasmic actin messenger RNAs to different cytoplasmic compartments, J. Cell Biol., 123, 165–172. doi: https://doi.org/10.1083/jcb.123.1.165.

    Article  CAS  PubMed  Google Scholar 

  36. Lawrence, J. B., and Singer, R. H. (1986) Intracellular localization of messenger RNAs for cytoskeletal proteins, Cell, 45, 407–415. doi: https://doi.org/10.1016/0092-8674(86)90326-0.

    Article  CAS  PubMed  Google Scholar 

  37. Shestakova, E. A., Singer, R. H., and Condeelis, J. (2001) The physiological significance of beta-actin mRNA localization in determining cell polarity and directional motility, Proc. Natl. Acad. Sci. USA, 98, 7045–7050. doi: https://doi.org/10.1073/pnas.121146098.

    Article  CAS  PubMed  Google Scholar 

  38. Ross, A. F., Oleynikov, Y., Kislauskis, E. H., Taneja, K. L., and Singer, R. H. (1997) Characterization of a beta-actin mRNA zipcode-binding protein, Mol. Cell. Biol., 17, 21582165, doi: https://doi.org/10.1128/MCB.17.4.2158.

    Article  Google Scholar 

  39. Kislauskis, E. H., Zhu, X., and Singer, R. H. (1997) Betaactin messenger RNA localization and protein synthesis augment cell motility, J. Cell Biol., 136, 1263–1270. doi: https://doi.org/10.1083/jcb.136.6.1263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang, W., Goswami, S., Lapidus, K., Wells, A. L., Wyckoff, J. B., Sahai, E., Singer, R. H., Segall, J. E., and Condeelis, J. S. (2004) Identification and testing of a gene expression signature of invasive, carcinoma cells within primary mammary tumors, Cancer Res., 64, 8585–8594. doi: https://doi.org/10.1158/0008-5472.CAN-04-1136.

    Article  CAS  PubMed  Google Scholar 

  41. Condeelis, J., and Singer, R. H. (2005) How and why does beta-actin mRNA target? Biol. Cell, 97, 97–110. doi: https://doi.org/10.1042/BC20040063.

    Article  CAS  PubMed  Google Scholar 

  42. Katz, Z. B., Wells, A. L., Park, H. Y, Wu, B., Shenoy, S. M., and Singer, R. H. (2012) β-Actin mRNA compartmentalization enhances focal adhesion stability and directs cell migration, Genes Dev., 26, 1885–1890. doi: https://doi.org/10.1101/gad.190413.112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hill, M. A., and Gunning, P. (1993) Beta and gamma actin mRNAs are differentially located within myoblasts, J. Cell Biol, 122, 825–832. doi: https://doi.org/10.1083/jcb.122.4.825.

    Article  CAS  PubMed  Google Scholar 

  44. Hannan, A. J., Gunning, P., Jeffrey, P L., and Weinberger, R. P (1998) Structural compartments within neurons: developmentally regulated organization of microfilament isoform mRNA and protein, Mol. Cell. Neurosci., 11, 289304, doi: https://doi.org/10.1006/mcne.1998.0693.

    Article  Google Scholar 

  45. Karakozova, M., Kozak, M., Wong, C. C. L., Bailey, A. O., Yates, J. R., Mogilner, A., Zebroski, H., and Kashina, A. (2006) Arginylation of beta-actin regulates actin cytoskeleton and cell motility, Science, 313, 192–196. doi: https://doi.org/10.1126/science.1129344.

    Article  CAS  PubMed  Google Scholar 

  46. Kashina, A. S. (2006) Differential arginylation of actin isoforms: the mystery of the actin N-terminus, Trends Cell Biol., 16, 610–615. doi: https://doi.org/10.1016/j.tcb.2006.10.001.

    Article  CAS  PubMed  Google Scholar 

  47. Wong, C. C. L., Xu, T., Rai, R., Bailey, A. O., Yates, J. R., Wolf, Y. I., Zebroski, H., and Kashina, A. (2007) Global analysis of posttranslational protein arginylation, PLoS Biol., 5, e258, doi: https://doi.org/10.1371/journal.pbio.0050258.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Behrmann, E., Muller, M., Penczek, P A., Mannherz, H. G., Manstein, D. J., and Raunser, S. (2012) Structure of the rigor actin—tropomyosin—myosin complex, Cell, 150, 327–338. doi: https://doi.org/10.1016/j.cell.2012.05.037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Abe, A., Saeki, K., Yasunaga, T., and Wakabayashi, T. (2000) Acetylation at the N-terminus of actin strengthens weak interaction between actin and myosin, Biochem. Biophys. Res. Commun., 268, 14–19. doi: https://doi.org/10.1006/bbrc.1999.2069.

    Article  CAS  PubMed  Google Scholar 

  50. Wiame, E., Tahay, G., Tyteca, D., Vertommen, D., Stroobant, V., Bommer, G. T, and van Schaftingen, E. (2018) NAT6 acetylates the N-terminus of different forms of actin, FEBS J, 285, 3299–316. doi: https://doi.org/10.1111/febs.14605.

    Article  CAS  PubMed  Google Scholar 

  51. Otey, C. A., Kalnoski, M. H., and Bulinski, J. C. (1987) Identification and quantification of actin isoforms in vertebrate cells and tissues, J. Cell. Biochem., 34, 113–124. doi: https://doi.org/10.1002/jcb.240340205.

    Article  CAS  PubMed  Google Scholar 

  52. Chaponnier, C., and Gabbiani, G. (2004) Pathological situations characterized by altered actin isoform expression, J. Pathol, 204, 386–395. doi: https://doi.org/10.1002/path.1635.

    Article  CAS  PubMed  Google Scholar 

  53. Ampe, C., and van Troys, M. (2017) Mammalian actins: isoform-specific functions and diseases, Handb. Exp. Pharmacol, 235, 1–37. doi: 10.1007/164_2016_43.

    CAS  PubMed  Google Scholar 

  54. Perrin, B. J., and Ervasti, J. M. (2010) The actin gene family: function follows isoform, Cytoskeleton (Hoboken), 67, 630–634. doi: 10.1002/cm.20475.

    Article  CAS  Google Scholar 

  55. Belyantseva, I. A., Perrin, B. J., Sonnemann, K. J., Zhu, M., Stepanyan, R., McGee, J., Frolenkov, G. I., Walsh, E. J., Friderici, K. H., Friedman, T. B., and Ervasti, J. M. (2009) Gamma-actin is required for cytoskeletal maintenance but not development, Proc. Natl. Acad. Sci. USA, 106, 9703–9708. doi: https://doi.org/10.1073/pnas.0900221106.

    Article  PubMed  Google Scholar 

  56. Bunnell, T. M., and Ervasti, J. M. (2010) Delayed embryonic development and impaired cell growth and survival in Actg1 null mice, Cytoskeleton (Hoboken), 67, 564–572. doi: https://doi.org/10.1002/cm.20467.

    Article  CAS  Google Scholar 

  57. Latham, S. L., Ehmke, N., Reinke, P. Y. A., Taft, M. H., Eicke, D., Reindl, T., Stenzel, W., Lyons, M. J., Friez, M. J., Lee, J. A., Hecker, R., Fruhwald, M. C., Becker, K., Neuhann, T. M., Horn, D., Schrock, E., Niehaus, I., Sarnow, K., Grutzmann, K., Gawehn, L., Klink, B., Rump, A., Chaponnier, C., Figueiredo, C., Knofler, R., Manstein, D. J., and Di Donato, N. (2018) Variants in exons 5 and 6 of ACTB cause syndromic thrombocytopenia, Nat. Commun, 9, 4250, doi: https://doi.org/10.1038/s41467-018-06713-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dugina, V., Zwaenepoel, I., Gabbiani, G., Clement, S., Chaponnier, C., Clement, S., and Chaponnier, C. (2009) Beta- and gamma-cytoplasmic actins display distinct distribution and functional diversity, J. CellSci., 122, 2980–2988. doi: https://doi.org/10.1242/jcs.041970.

    CAS  Google Scholar 

  59. Franke, W. W, Stehr, S., Stumpp, S., Kuhn, C., Heid, H., Rackwitz, H. R., Schnolzer, M., Baumann, R., Holzhausen, H. J., and Moll, R. (1996) Specific immunohistochemical detection of cardiac/fetal alpha-actin in human cardiomyocytes and regenerating skeletal muscle cells, Differentiation, 60, 245–250. doi: https://doi.org/10.1046/j.14320436.1996.6040245.x.

    Article  CAS  PubMed  Google Scholar 

  60. Shagieva, G. S., Domnina, L. V., Chipysheva, T. A., Ermilova, V. D., Chaponnier, C., and Dugina, V. B. (2012) Actin isoforms and reorganization of adhesion junctions in epithelial-to-mesenchymal transition of cervical carcinoma cells, Biochemistry (Moscow), 77, 1266–1276. doi: https://doi.org/10.1134/S0006297912110053.

    Article  CAS  Google Scholar 

  61. Baranwal, S., Naydenov, N. G., Harris, G., Dugina, V., Morgan, K. G., Chaponnier, C., and Ivanov, A. I. (2012) Nonredundant roles of cytoplasmic β- and γ-actin isoforms in regulation of epithelial apical junctions, Mol. Biol. Cell, 23, 3542–3553. doi: https://doi.org/10.1091/mbc.E12-02-0162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dugina, V. B., Chipysheva, T. A., Ermilova, V. D., Gabbiani, D., Chaponnier, C., and Vasil’ev, Iu. M. (2008) Distribution of actin isoforms in normal, dysplastic, and tumorous human breast cells, Arkh. Patol., 70, 28–31.

    CAS  PubMed  Google Scholar 

  63. Dugina, V., Arnoldi, R., Janmey, P. A., and Chaponnier, C. (2012) Actin, in The Cytoskeleton and Human Disease (Cavallaris, M., ed.) Humana Press-Springer, pp. 3–28, doi: https://doi.org/10.1007/978-1-61779-788-0.

    Chapter  Google Scholar 

  64. Brockmann, C., Huarte, J., Dugina, V., Challet, L., Rey, E., Conne, B., Swetloff, A., Nef, S., Chaponnier, C., and Vassalli, J.-D. (2011) Beta- and gamma-cytoplasmic actins are required for meiosis in mouse oocytes, Biol. Reprod., 85, 1025–1039. doi: https://doi.org/10.1095/biolreprod.111.091736.

    Article  CAS  PubMed  Google Scholar 

  65. Pokorna, E., Jordan, P. W., O’Neill, C. H., Zicha, D., Gilbert, C. S., and Vesely, P. (1994) Actin cytoskeleton and motility in rat sarcoma cell populations with different metastatic potential, Cell Motil. Cytoskeleton, 28, 25–33. doi: https://doi.org/10.1002/cm.970280103.

    Article  CAS  PubMed  Google Scholar 

  66. Sahai, E., and Marshall, C. J. (2003) Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis, Nat. Cell Biol, 5, 711–719. doi: https://doi.org/10.1038/ncb1019.

    Article  CAS  PubMed  Google Scholar 

  67. Leavitt, J., Gunning, P., Kedes, L., and Jariwalla, R. (1985) Smooth muscle alpha-actin is a transformation-sensitive marker for mouse NIH 3T3 and Rat-2 cells, Nature, 316, 840–842.

    Article  CAS  PubMed  Google Scholar 

  68. Okamoto-Inoue, M., Taniguchi, S., Sadano, H., Kawano, T., Kimura, G., Gabbiani, G., and Baba, T. (1990) Alteration in expression of smooth muscle alpha-actin associated with transformation of rat 3Y1 cells, J. Cell Sci., 96, 631–637.

    CAS  PubMed  Google Scholar 

  69. Witt, D. P., Brown, D. J., and Gordon, J. A. (1983) Transformation-sensitive isoactin in passaged chick embryo fibroblasts transformed by Rous sarcoma virus, J. Cell Biol., 96, 1766–1771. doi: https://doi.org/10.1083/jcb.96.6.1766.

    Article  CAS  PubMed  Google Scholar 

  70. Vandekerckhove, J., Leavitt, J., Kakunaga, T., and Weber, K. (1980) Coexpression of a mutant beta-actin and the two normal beta- and gamma-cytoplasmic actins in a stably transformed human cell line, Cell, 22, 893–899. doi: https://doi.org/10.1016/0092-8674(80)90566-8.

    Article  CAS  PubMed  Google Scholar 

  71. Leavitt, J., Ng, S. Y., Aebi, U., Varma, M., Latter, G., Burbeck, S., Kedes, L., and Gunning, P. (1987) Expression of transfected mutant beta-actin genes: alterations of cell morphology and evidence for autoregulation in actin pools, Mol. Cell. Biol, 7, 2457–2466. doi: https://doi.org/10.1128/MCB.7.7.2457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sadano, H., Taniguchi, S., Kakunaga, T., and Baba, T. (1988) cDNA cloning and sequence of a new type of actin in mouse B16 melanoma, J. Biol. Chem., 263, 15868–15871.

    CAS  PubMed  Google Scholar 

  73. Lapidus, K., Wyckoff, J., Mouneimne, G., Lorenz, M., Soon, L., Condeelis, J. S., and Singer, R. H. (2007) ZBP1 enhances cell polarity and reduces chemotaxis, J. Cell Sci., 120, 3173–3178. doi: https://doi.org/10.1242/jcs.000638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Shum, M. S. Y., Pasquier, E., Po’uha, S. T, O’Neill, G. M., Chaponnier, C., Gunning, P. W, and Kavallaris, M. (2011) γ-Actin regulates cell migration and modulates the ROCK signaling pathway, FASEB J., 25, 4423–4433. doi: https://doi.org/10.1096/fj.11-185447.

    Article  CAS  PubMed  Google Scholar 

  75. Dong, X., Han, Y., Sun, Z., and Xu, J. (2018) Actin gamma 1, a new skin cancer pathogenic gene, identified by the biological feature-based classification, J. Cell. Biochem., 119, 1406–1419. doi: https://doi.org/10.1002/jcb.26301.

    Article  CAS  PubMed  Google Scholar 

  76. Tondeleir, D., Lambrechts, A., Muller, M., Jonckheere, V., Doll, T, Vandamme, D., Bakkali, K., Waterschoot, D., Lemaistre, M., Debeir, O., Decaestecker, C., Hinz, B., Staes, A., Timmerman, E., Colaert, N., Gevaert, K., Vandekerckhove, J., and Ampe, C. (2012) Cells lacking β-actin are genetically reprogrammed and maintain conditional migratory capacity, Mol. Cell. Proteom., 11, 255–271. doi: https://doi.org/10.1074/mcp.M111.015099.

    Article  CAS  Google Scholar 

  77. Shagieva, G., Domnina, L., Makarevich, O., Chernyak, B., Skulachev, V., and Dugina, V. (2017) Depletion of mitochondrial reactive oxygen species downregulates epithelial-to-mesenchymal transition in cervical cancer cells, Oncotarget, 8, 4901–4913. doi: https://doi.org/10.18632/oncotarget.13612.

    Article  PubMed  Google Scholar 

  78. Pawlak, G., and Helfman, D. M. (2001) Cytoskeletal changes in cell transformation and tumorigenesis, Curr. Opin. Genet. Dev., 11, 41–47. doi: https://doi.org/10.1016/S0959-437X(00)00154-4.

    Article  CAS  PubMed  Google Scholar 

  79. Pollack, R., Osborn, M., and Weber, K. (1975) Patterns of organization of actin and myosin in normal and transformed cultured cells, Proc. Natl. Acad. Sci. USA, 72, 994–998.

    Article  CAS  PubMed  Google Scholar 

  80. Rubin, R. W., Warren, R. H., Lukeman, D. S., and Clements, E. (1978) Actin content and organization in normal and transformed cells in culture, J. Cell Biol., 78, 2835.

    Article  Google Scholar 

  81. Verderame, M., Alcorta, D., Egnor, M., Smith, K., and Pollack, R. (1980) Cytoskeletal F-actin patterns quantitated with fluorescein isothiocyanate-phalloidin in normal and transformed cells, Proc. Natl. Acad. Sci. USA, 77, 66246628, doi: https://doi.org/10.1073/pnas.77.11.6624.

  82. Dugina, V. B., Ermilova, V. D., Chemeris, G. Iu., and Chipysheva, T. A. (2010) Actins and keratins in the diagnosis of human basal-like breast cancer, Arkh. Patol., 72, 1215.

    Google Scholar 

  83. Agapova, L. S., Chernyak, B. V., Domnina, L. V., Dugina, V. B., Efimenko, A. Y., Fetisova, E. K., Ivanova, O. Y., Kalinina, N. I., Khromova, N. V., Kopnin, B. P., Kopnin, P. B., Korotetskaya, M. V., Lichinitser, M. R., Lukashev, A. L., Pletjushkina, O. Y, Popova, E. N., Skulachev, M. V., Shagieva, G. S., Stepanova, E. V., Titova, E. V., Tkachuk, V. A., Vasiliev, J. M., and Skulachev, V. P (2008) Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 3. Inhibitory effect of SkQ1 on tumor development from p53-deficient cells, Biochemistry (Moscow), 73, 1300–1316. doi: https://doi.org/10.1134/S0006297908120031.

    Article  CAS  Google Scholar 

  84. Titova, E., Shagieva, G., Ivanova, O., Domnina, L., Domninskaya, M., Strelkova, O., Khromova, N., Kopnin, P., Chernyak, B., Skulachev, V., and Dugina, V. (2018) Mitochondria-targeted antioxidant SkQ1 suppresses fibrosarcoma and rhabdomyosarcoma tumour cell growth, Cell Cycle, 17, 1797–1811. doi: https://doi.org/10.1080/15384101.2018.1496748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Dugina, V., Khromova, N., Rybko, V., Blizniukov, O., Shagieva, G., Chaponnier, C., Kopnin, B., and Kopnin, P. (2015) Tumor promotion by γ and suppression by β nonmuscle actin isoforms, Oncotarget, 6, 14556–14571. doi: https://doi.org/10.18632/oncotarget.3989.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Dugina, V., Alieva, I., Khromova, N., Kireev, I., Gunning, P. W, and Kopnin, P. (2016) Interaction of microtubules with the actin cytoskeleton via cross-talk of EB1-containing +TIPs and γ-actin in epithelial cells, Oncotarget, 7, 72699–72715. doi: https://doi.org/10.18632/oncotarget.12236.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Dugina, V., Shagieva, G., Khromova, N., and Kopnin, P. (2018) Divergent impact of actin isoforms on cell cycle regulation, Cell Cycle, 17, 2610–2621. doi: https://doi.org/10.1080/15384101.2018.1553337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Novikova, M. V., Rybko, V. A., Kochatkov, A. V., Khromova, N. V., Bogomazova, S. Y., Dugina, V. B., Lyadov, V. K., and Kopnin, P. B. (2017) A change in the expression of membrane-associated proteins and cytoplasmic actin isoforms in the progression of human colon tumors, Arkh. Patol., 79, 15–21. doi: https://doi.org/10.17116/patol201779215-21.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. B. Kopnin.

Additional information

Published in Russian in Biokhimiya, 2019, Vol. 84, No. 6, pp. 747-758.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dugina, V.B., Shagieva, G.S. & Kopnin, P.B. Biological Role of Actin Isoforms in Mammalian Cells. Biochemistry Moscow 84, 583–592 (2019). https://doi.org/10.1134/S0006297919060014

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297919060014

Keywords

Navigation