Skip to main content
Log in

“Necessity Is the Mother of Invention” or Inexpensive, Reliable, and Reproducible Protocol for Generating Organoids

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Organoids are three-dimensional (3D) cell cultures that replicate some of the key features of morphology, spatial architecture, and functions of a particular organ. Organoids can be generated from both adult and pluripotent stem cells (PSCs), and complex organoids can also be obtained by combining different types of cells, including differentiated cells. The ability of pluripotent cells to self-organize into organotypic structures containing several cell subtypes specific for a particular organ was used for creating organoids of the brain, eye, kidney, intestine, and other organs. Despite the advantages of using PSCs for obtaining organoids, an essential shortcoming that prevents their widespread use has been a low yield when they are obtained from a PSC monolayer culture and a large variation in size. This leads to great heterogeneity on further differentiation. In this article, we describe our own protocol for generating standardized organoids, with emphasis on a method for generating brain organoids, which allows scaling-up experiments and makes their cultivation less expensive and easier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

bFGF:

basic fibroblast growth factor

DAPI:

4′,6-diamidino-2-phenylindole dihydrochloride

DMEM:

Dulbecco’s Modified Eagle’s Medium

FBS:

fetal bovine serum

(i)PSC:

(induced) pluripotent stem cells

PBS:

phosphate buffered saline

SR:

serum replacement

References

  1. Lancaster, M. A., Renner, M., Martin, C. A., Wenzel, D., Bicknell, L. S., Hurles, M. E., Homfray, T., Penninger, J. M., Jackson, A. P., and Knoblich, J. A. (2013) Cerebral organoids model human brain development and micro–cephaly, Nature, 501, 373–379.

    Article  CAS  PubMed  Google Scholar 

  2. Lancaster, M. A., and Knoblich, J. A. (2014) Organogenesis in a dish: modeling development and disease using organoid technologies, Science, 345, 124–125.

    Article  CAS  Google Scholar 

  3. Pasca, A. M., Sloan, S. A., Clarke, L. E., Tian, Y., Makinson, C. D., Huber, N., Kim, C. H., Park, J. Y., O’Rourke, N. A., Nguyen, K. D., Smith, S. J., Huguenard, J. R., Geschwind, D. H., Barres, B. A., and Pasca, S. P. (2015) Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture, Nat. Methods, 12, 671–678.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Kadoshima, T., Sakaguchi, H., Nakano, T., Soen, M., Ando, S., Eiraku, M., and Sasai, Y. (2013) Self–organiza–tion of axial polarity, inside–out layer pattern, and species–specific progenitor dynamics in human ES cell–derived neocortex, Proc. Natl. Acad. Sci. USA, 110, 20284–20289.

    Article  CAS  PubMed  Google Scholar 

  5. Renner, M., Lancaster, M. A., Bian, S., Choi, H., Ku, T., Peer, A., Chung, K., and Knoblich, J. A. (2017) Self–organized developmental patterning and differentiation in cerebral organoids, EMBO J., 36, 1316–1329.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Sato, T., Vries, R. G., Snippert, H. J., Wetering, M., Barker, N., Stange, D. E., Es, J. H., Abo, A., Kujala, P., Peters, P. J., and Clevers, H. (2009) Single Lgr5 stem cells build crypt–villus structures in vitro without a mesenchymal niche, Nature, 459, 262–265.

    Article  CAS  PubMed  Google Scholar 

  7. Wells, J. M., and Spence, J. R. (2014) How to make an intestine, Development, 141, 752–760.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Spence, J. R., Mayhew, C. N., Rankin, S. A., Kuhar, M. F., Vallance, J. E., Tolle, K., Hoskins, E. E., Kalinichenko, V. V., Wells, S. I., Zorn, A. M., Shroyer, N. F., and Wells, J. M. (2011) Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro, Nature, 470, 105–109.

    Article  CAS  Google Scholar 

  9. Takasato, M., Er, P. X., Chiu, H. S., Maier, B., Baillie, G. J., Ferguson, C., Parton, R. G., Wolvetang, E. J., Roost, M. S., Chuva de Sousa Lopes, S. M., and Little, M. H. (2015) Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis, Nature, 526, 564–568.

    Article  CAS  PubMed  Google Scholar 

  10. Takasato, M., Er, P. X., Becroft, M., Vanslambrouck, J. M., Stanley, E. G., Elefanty, A. G., and Little, M. H. (2014) Directing human embryonic stem cell differentiation towards a renal lineage generates a self–organizing kidney, Nat. Cell Biol., 16, 118–126.

    Article  CAS  PubMed  Google Scholar 

  11. Nakano, T., Ando, S., Takata, N., Kawada, M., Muguruma, K., Sekiguchi, K., Saito, K., Yonemura, S., Eiraku, M., and Sasai, Y. (2012) Self–formation of optic cups and storable stratified neural retina from human ESCs, Cell Stem Cell, 10, 771–785.

    Article  CAS  PubMed  Google Scholar 

  12. Eiraku, M., Takata, N., Ishibashi, H., Kawada, M., Sakakura, E., Okuda, S., Sekiguchi, K., Adachi, T., and Sasai, Y. (2011) Self–organizing optic–cup morphogenesis in three–dimensional culture, Nature, 472, 51–56.

    Article  CAS  PubMed  Google Scholar 

  13. Quadrato, G., Nguyen, T., Macosko, E. Z., Sherwood, J. L., Min Yang, S., Berger, D. R., Maria, N., Scholvin, J., Goldman, M., Kinney, J. P., Boyden, E. S., Lichtman, J. W., Williams, Z. M., McCarroll, S. A., and Arlotta, P. (2017) Cell diversity and network dynamics in photosensi–tive human brain organoids, Nature, 545, 48–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Huch, M., Gehart, H., van Boxtel, R., Hamer, K., Blokzijl, F., Verstegen, M. M., Ellis, E., van Wenum, M., Fuchs, S. A., de Ligt, J., van de Wetering, M., Sasaki, N., Boers, S. J., Kemperman, H., de Jonge, J., Ijzermans, J. N., Nieuwenhuis, E. E., Hoekstra, R., Strom, S., Vries, R. R., van der Laan, L. J., Cuppen, E., and Clevers, H. (2015) Long–term culture of genome–stable bipotent stem cells from adult human liver, Cell, 160, 299–312.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Takebe, T., Sekine, K., Enomura, M., Koike, H., Kimura, M., Ogaeri, T., Zhang, R. R., Ueno, Y., Zheng, Y. W., Koike, N., Aoyama, S., Adachi, Y., and Taniguchi, H. (2013) Vascularized and functional human liver from an iPSC–derived organ bud transplant, Nature, 499, 481–484.

    Article  CAS  PubMed  Google Scholar 

  16. Giandomenico, S. L., and Lancaster, M. A. (2017) Probing human brain evolution and development in organoids, Curr. Opin. Cell Biol., 44, 36–43.

    Article  CAS  PubMed  Google Scholar 

  17. Conforti, P., Besusso, D., Bocchi, V. D., Faedo, A., Cesana, E., Rossetti, G., Ranzani, V., Svendsen, C. N., Thompson, L. M., Toselli, M., Biella, G., Pagani, M., and Cattaneo, E. (2018) Faulty neuronal determination and cell polarization are reverted by modulating HD early pheno–types, Proc. Natl. Acad. Sci. USA, 115, E762–E771.

    Google Scholar 

  18. Lebedeva, O. S., and Lagarkova, M. A. (2018) Pluripotent stem cells for modelling and cell therapy of Parkinson’s dis–ease, Biochemistry (Moscow), 83, 1046–1056.

    Article  CAS  Google Scholar 

  19. Clevers, H. (2016) Modeling development and disease with organoids, Cell, 165, 1586–1597.

    Article  CAS  PubMed  Google Scholar 

  20. Dang, J., Tiwari, S. K., Lichinchi, G., Qin, Y., Patil, V. S., Eroshkin, A. M., and Rana, T. M. (2016) Zika virus depletes neural progenitors in human cerebral organoids through activation of the innate immune receptor TLR3, Cell Stem Cell, 19, 258–265.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Chen, K. G., Mallon, B. S., Park, K., Robey, P. G., McKay, R. D. G., Gottesman, M. M., and Zheng, W. (2018) Pluripotent stem cell platforms for drug discovery, Trends Mol. Med., 24, 805–820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Qian, X., Nguyen, H. N., Jacob, F., Song, H., and Ming, G. L. (2017) Using brain organoids to understand Zika virus–induced microcephaly, Development, 144, 952–957.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Kelava, I., and Lancaster, M. A. (2016) Stem cell models of human brain development, Cell Stem Cell, 18, 736–748.

    Article  CAS  PubMed  Google Scholar 

  24. Di Lullo, E., and Kriegstein, A. R. (2017) The use of brain organoids to investigate neural development and disease, Nat. Rev. Neurosci., 18, 573–584.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Camp, J. G., Badsha, F., Florio, M., Kanton, S., Gerber, T., Wilsch–Brauninger, M., Lewitus, E., Sykes, A., Hevers, W., Lancaster, M., Knoblich, J. A., Lachmann, R., Paabo, S., Huttner, W. B., and Treutlein, B. (2015) Human cere–bral organoids recapitulate gene expression programs of fetal neocortex development, Proc. Natl. Acad. Sci. USA, 112, 15672–15677.

    Article  CAS  PubMed  Google Scholar 

  26. Xiang, Y., Tanaka, Y., Patterson, B., Kang, Y. J., Govindaiah, G., Roselaar, N., Cakir, B., Kim, K. Y., Lombroso, A. P., Hwang, S. M., Zhong, M., Stanley, E. G., Elefanty, A. G., Naegele, J. R., Lee, S. H., Weissman, S. M., and Park, I. H. (2017) Fusion of regionally specified hPSC–derived organoids models human brain development and interneuron migration, Cell Stem Cell, 21, 383–398.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Muguruma, K., Nishiyama, A., Kawakami, H., Hashimoto, K., and Sasai, Y. (2015) Self–organization of polarized cerebellar tissue in 3D culture of human pluripo–tent stem cells, Cell Rep., 10, 537–550.

    Article  CAS  PubMed  Google Scholar 

  28. Jo, J., Xiao, Y., Sun, A. X., Cukuroglu, E., Tran, H. D., Goke, J., Tan, Z. Y., Saw, T. Y., Tan, C. P., Lokman, H., Lee, Y., Kim, D., Ko, H. S., Kim, S. O., Park, J. H., Cho, N. J., Hyde, T. M., Kleinman, J. E., Shin, J. H., Weinberger, D. R., Tan, E. K., Je, H. S., and Ng, H. H. (2016) Midbrain–like organoids from human pluripotent stem cells contain functional dopaminergic and neurome–lanin–producing neurons, Cell Stem Cell, 19, 248–257.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Qian, X., Nguyen, H. N., Song, M. M., Hadiono, C., Ogden, S. C., Hammack, C., Yao, B., Hamersky, G. R., Jacob, F., Zhong, C., Yoon, K. J., Jeang, W., Lin, L., Li, Y., Thakor, J., Berg, D. A., Zhang, C., Kang, E., Chickering, M., Nauen, D., Ho, C. Y., Wen, Z., Christian, K. M., Shi, P. Y., Maher, B. J., Wu, H., Jin, P., Tang, H., Song, H., and Ming, G. L. (2016) Brain–region–specific organoids using mini–bioreactors for modeling ZIKV exposure, Cell, 165, 1238–1254.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Qian, X., Jacob, F., Song, M. M., Nguyen, H. N., Song, H., and Ming, G. L. (2018) Generation of human brain region–specific organoids using a miniaturized spinning bioreactor, Nat. Protoc., 13, 565–580.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Sakaguchi, H., Kadoshima, T., Soen, M., Narii, N., Ishida, Y., Ohgushi, M., Takahashi, J., Eiraku, M., and Sasai, Y. (2015) Generation of functional hippocampal neurons from self–organizing human embryonic stem cell–derived dorsomedial telencephalic tissue, Nat. Commun., 6, 8896.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Nasr, B., Chatterton, R., Yong, J. H. M., Jamshidi, P., D’Abaco, G. M., Bjorksten, A. R., Kavehei, O., Chana, G., Dottori, M., and Skafidas, E. (2018) Self–organized nanostructure modified microelectrode for sensitive elec–trochemical glutamate detection in stem cells–derived brain organoids, Biosensors (Basel), 8, E14.

    Google Scholar 

  33. Yakoub, A. M., and Sadek, M. (2018) Development and characterization of human cerebral organoids: an opti–mized protocol, Cell Transplant., 27, 393–406.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Krefft, O., Jabali, A., Iefremova, V., Koch, P., and Ladewig, J. (2018) Generation of standardized and repro–ducible forebrain–type cerebral organoids from human induced pluripotent stem cells, J. Vis. Exp., 131, 56768–56776.

    Google Scholar 

  35. Zweigerdt, R., Olmer, R., Singh, H., Haverich, A., and Martin, U. (2011) Scalable expansion of human pluripo–tent stem cells in suspension culture, Nat. Protoc., 6, 689–700.

    Article  CAS  PubMed  Google Scholar 

  36. Eldred, M. K., Charlton–Perkins, M., Muresan, L., and Harris, W. A. (2017) Self–organizing aggregates of zebrafish retinal cells for investigating mechanisms of neural lamina–tion, Development, 144, 1097–1106.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Raja, W. K., Mungenast, A. E., Lin, Y. T., Ko, T., Abdurrob, F., Seo, J., and Tsai, L. H. (2016) Self–organiz–ing 3D human neural tissue derived from induced pluripo–tent stem cells recapitulate Alzheimer’s disease pheno–types, PLoS One, 11, e0161969.

    Google Scholar 

  38. Eiraku, M., and Sasai, Y. (2012) Self–formation of layered neural structures in three–dimensional culture of ES cells, Curr. Opin. Neurobiol., 22, 768–777.

    Article  CAS  PubMed  Google Scholar 

  39. Belair, D. G., Wolf, C. J., Moorefield, S. D., Wood, C., Becker, C., and Abbott, B. D. (2018) A three–dimensional organoid culture model to assess the influence of chemicals on morphogenetic fusion, Toxicol. Sci., 166, 394–408.

    CAS  PubMed  Google Scholar 

  40. Liu, S., Xie, B., Song, X., Zheng, D., He, L., Li, G., Gao, G., Peng, F., Yu, M., Ge, J., and Zhong, X. (2018) Self–formation of RPE spheroids facilitates enrichment and expansion of hiPSC–derived RPE generated on retinal organoid induction platform, Invest. Ophthalmol. Vis. Sci., 59, 5659–5669.

    Article  CAS  PubMed  Google Scholar 

  41. Linxweiler, J., Hammer, M., Muhs, S., Kohn, M., Pryalukhin, A., Veith, C., Bohle, R. M., Stockle, M., Junker, K., and Saar, M. (2018) Patient–derived, three–dimensional spheroid cultures provide a versatile transla–tional model for the study of organ–confined prostate can–cer, J. Cancer Res. Clin. Oncol., doi: 10.1007/s00432–018–2803–5.

    Google Scholar 

  42. Flint, J. J., Menon, K., Hansen, B., Forder, J., and Blackband, S. J. (2015) A microperfusion and in–bore oxy–genator system designed for magnetic resonance microscopy studies on living tissue explants, Sci. Rep., 5, 18095.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Salek, M. M., Sattari, P., and Martinuzzi, R. J. (2012) Analysis of fluid flow and wall shear stress patterns inside partially filled agitated culture well plates, Ann. Biomed. Eng., 40, 707–728.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Eremeev or M. A. Lagarkova.

Additional information

Russian Text © A. V. Eremeev, E. A. Volovikov, L. D. Shuvalova, A. V. Davidenko, E. A. Khomyakova, M. E. Bogomiakova, O. S. Lebedeva, O. A. Zubkova, M. A. Lagarkova, 2019, published in Biokhimiya, 2019, Vol. 84, No. 3, pp. 448–456.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eremeev, A.V., Volovikov, E.A., Shuvalova, L.D. et al. “Necessity Is the Mother of Invention” or Inexpensive, Reliable, and Reproducible Protocol for Generating Organoids. Biochemistry Moscow 84, 321–328 (2019). https://doi.org/10.1134/S0006297919030143

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297919030143

Keywords

Navigation