Skip to main content
Log in

Expression and Functional Properties of NMDA and GABAA Receptors during Differentiation of Human Induced Pluripotent Stem Cells into Ventral Mesencephalic Neurons

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Ionotropic glutamate and GABA receptors regulate the differentiation and determine the functional properties of mature neurons. Both insufficient and excessive activity of these neurotransmission systems are associated with various nervous system diseases. Our knowledge regarding the expression profiles of these receptors and the mechanisms of their regulation during the differentiation of specialized human neuron subtypes is limited. Here the expression profiles of the NMDA and GABAA receptor subunits were explored during in vitro differentiation of human induced pluripotent stem cells (iPSCs) into ventral mesencephalic neurons. The correlation between the neuronal maturation and the expression dynamics of these genes was investigated, and the functional activity of these receptors was assessed by calcium imaging. The role of NMDA and GABAA receptors in neurite outgrowth and the development of spontaneous activity was analyzed using the viral transduction of neural progenitors with the reporter genes TagGFP and TagRFP. The data indicate that agonists of the investigated receptors can be employed for optimization of existing protocols for neural differentiation of iPSCs, in particular for acceleration of neuronal maturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BDNF:

brain derived nerve growth factor

(c)NPs:

(committed) neural progenitors

eNPs:

early neural progenitors

ESCs:

embryonic stem cells

GABA:

α-aminobutyric acid

GABAA-R:

GABAA receptors

GDNF:

glial cell derived nerve growth factor

iPSCs:

induced pluripotent stem cells

NMDA:

N-methyl-D-aspartic acid

NMDA-R:

NMDA receptors

RT-PCR:

reverse transcription polymerase chain reaction

TD:

terminal differentiation

VM neurons:

ventral mesencephalic neurons

References

  1. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S. (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors, Cell, 131, 861–872.

    Article  CAS  PubMed  Google Scholar 

  2. Novosadova, E. V., and Grivennikov, I. A. (2014) Induced pluripotent stem cells: from derivation to application in biochemical and biomedical research, Biochemistry (Moscow), 79, 1425–1441.

    Article  CAS  Google Scholar 

  3. Schaarschmidt, G., Schewtschik, S., Kraft, R., Wegner, F., Eilers, J., Schwarz, J., and Schmidt, H. (2009) A new cul–turing strategy improves functional neuronal development of human neural progenitor cells, J. Neurochem., 109, 238–247.

    Article  CAS  PubMed  Google Scholar 

  4. Zhou, Q., and Sheng, M. (2013) NMDA receptors in nerv–ous system diseases, Neuropharmacology, 74, 69–75.

    Article  CAS  PubMed  Google Scholar 

  5. Koutsilieri, E., and Riederer, P. (2007) Excitotoxicity and new antiglutamatergic strategies in Parkinson’s disease and Alzheimer’s disease, Parkinsonism Relat. Disord., 13, S329–S331.

    Book  Google Scholar 

  6. Dong, X. X., Wang, Y., and Qin, Z. H. (2009) Molecular mechanisms of excitotoxicity and their relevance to patho–genesis of neurodegenerative diseases, Acta Pharmacol. Sin., 30, 379–387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rowley, N. M., Madsen, K. K., Schousboe, A., and Steve White, H. (2012) Glutamate and GABA synthesis, release, transport and metabolism as targets for seizure control, Neurochem. Int., 61, 546–558.

    Article  CAS  PubMed  Google Scholar 

  8. Nacher, J., and McEwen, B. S. (2006) The role of N–methyl–D–asparate receptors in neurogenesis, Hippocampus, 16, 267–270.

    Article  CAS  PubMed  Google Scholar 

  9. Galanopoulou, A. S. (2008) GABAA receptors in normal development and seizures: friends or foes? Curr. Neuropharmacol., 6, 1–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Young, A., Machacek, D. W., Dhara, S. K., Macleish, P. R., Benveniste, M., Dodla, M. C., Sturkie, C. D., and Stice, S. L. (2011) Ion channels and ionotropic receptors in human embryonic stem cell derived neural progenitors, Neuroscience, 192, 793–805.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang, W. B., Ross, P. J., Tu, Y., Wang, Y., Beggs, S., Sengar, A. S., Ellis, J., and Salter, M. W. (2016) Fyn kinase regulates GluN2B subunit–dominant NMDA receptors in human induced pluripotent stem cell–derived neurons, Sci. Rep., 6, 23837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ishii, M. N., Yamamoto, K., Shoji, M., Asami, A., and Kawamata, Y. (2017) Human induced pluripotent stem cell (hiPSC)–derived neurons respond to convulsant drugs when co–cultured with hiPSC–derived astrocytes, Toxicology, 389, 130–138.

    Article  CAS  PubMed  Google Scholar 

  13. Nekrasov, E. D., Lebedeva, O. S., Chestkov, I. V., Syusina, M. A., Fedotova, E. Yu., Lagar’kova, M. A., Kiselev, S. L., Grivennikov, I. A., and Illarioshkin, S. N. (2011) Obtain–ing and characterization of induced pluripotent stem cells from human skin fibroblasts of patients with neurodege–nerative diseases, Klet. Transplant. Tkan. Inzhener., 6, 1–7.

    Google Scholar 

  14. Lebedeva, O. S., Novosadova, E. V., Manuilova, E. S., Arsen’eva, E. L., Kiselev, S. L., Lagar’kova, M. A., Khaspekov, L. G., Illarioshkin, S. N., and Grivennikov, I. A. (2014) Obtaining and characterization of the induced pluripotent stem cell–based model of Parkinson disease, in Stem Cells and Regenerative Medicine (Tkachuk, V. A., ed.) [in Russian], Moscow University Publishers, Moscow, pp. 154–168.

    Google Scholar 

  15. Antonov, S. A., Novosadova, E. V., Arsenyeva, E. L., Grefenstein, M. A., Zykova, A. A., Kobylyansky, A. G., Manuilova, E. S., Grivennikov, I. A., Illarioshkin, S. N., and Myasoedov, N. F. (2016) Investigation of the effects of GABA receptor agonists in the differentiation of human induced pluripotent stem cells into dopaminergic neurons, Dokl. Biol. Sci., 470, 244–246.

    Article  CAS  PubMed  Google Scholar 

  16. Livak, K. J., and Schmittgen, T. D. (2001) Analysis of rela–tive gene expression data using real–time quantitative PCR and the 2–ΔΔCT method, Methods, 25, 402–408.

    Article  CAS  PubMed  Google Scholar 

  17. Zhao, H., and Darzynkiewicz, Z. (2017) Rapid detection of DNA strand breaks in apoptotic cells by flow–and image–cytometry, Methods Mol. Biol., 1644, 139–149.

    Article  CAS  PubMed  Google Scholar 

  18. Verpelli, C., Carlessi, L., Bechi, G., Fusar Poli, E., Orellana, D., Heise, C., Franceschetti, S., Mantegazza, R., Mantegazza, M., Delia, D., and Sala, C. (2013) Comparative neuronal differentiation of self–renewing neu–ral progenitor cell lines obtained from human induced pluripotent stem cells, Front. Cell. Neurosci., 7, 1–14.

    Article  CAS  Google Scholar 

  19. Liu, X. B., Murray, K. D., and Jones, E. G. (2004) Switching of NMDA receptor 2A and 2B subunits at thala–mic and cortical synapses during early postnatal develop–ment, J. Neurosci., 24, 8885–8895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Elkabetz, Y., Panagiotakos, G., Al Shamy, G., Socci, N. D., Tabar, V., and Studer, L. (2008) Human ES cell–derived neural rosettes reveal a functionally distinct early neural stem cell stage, Genes Dev., 22, 152–165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dingledine, R., Borges, K., Bowie, D., and Traynelis, S. F. (1999) The glutamate receptor ion channels, Pharmacol. Rev., 51, 7–61.

    CAS  PubMed  Google Scholar 

  22. Ben–Ari, Y. (2002) Excitatory actions of gaba during devel–opment: the nature of the nurture, Nat. Rev. Neurosci., 3, 728–739.

    Article  CAS  PubMed  Google Scholar 

  23. Herlenius, E., and Lagercrantz, H. (2010) Neurotransmit–ters and neuromodulators during brain development, in The Newborn Brain: Neuroscience and Clinical Applications (Lagercrantz, H., ed.) 2nd Edn., Cambridge University Press, pp. 99–119.

    Google Scholar 

  24. Rogawski, M. A. (2011) Revisiting AMPA receptors as an antiepileptic drug target, Epilepsy Curr., 11, 56–63.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gupta, K., Hardingham, G. E., and Chandran, S. (2013) NMDA receptor–dependent glutamate excitotoxicity in human embryonic stem cell–derived neurons, Neurosci. Lett., 543, 95–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bergey, G. K., Fitzgerald, S. C., Schrier, B. K., and Nelson, P. G. (1981) Neuronal maturation in mammalian cell culture is dependent on spontaneous electrical activity, Brain Res., 207, 49–58.

    Article  CAS  PubMed  Google Scholar 

  27. Lam, R. S., Topfer, F. M., Wood, P. G., Busskamp, V., and Bamberg, E. (2017) Functional maturation of human stem cell–derived neurons in long–term cultures, PLoS One, 12, e0169506.

    Book  Google Scholar 

  28. Gunhanlar, N., Shpak, G., van der Kroeg, M., Gouty–Colomer, L. A., Munshi, S. T., Lendemeijer, B., Ghazvini, M., Dupont, C., Hoogendijk, W. J. G., Gribnau, J., de Vrij, F. M. S., and Kushner, S. A. (2017) A simplified protocol for differentiation of electrophysiologically mature neu–ronal networks from human induced pluripotent stem cells, Mol. Psychiatry, 23, 1336–1344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hirasawa, T., Wada, H., Kohsaka, S., and Uchino, S. (2003) Inhibition of NMDA receptors induces delayed neuronal maturation and sustained proliferation of progen–itor cells during neocortical development, J. Neurosci. Res., 74, 676–687.

    Article  CAS  PubMed  Google Scholar 

  30. Yamasaki, M., Okada, R., Takasaki, C., Toki, S., Fukaya, M., Natsume, R., Sakimura, K., Mishina, M., Shirakawa, T., and Watanabe, M. (2014) Opposing role of NMDA receptor GluN2B and GluN2D in somatosensory develop–ment and maturation, J. Neurosci., 34, 11534–11548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sernagor, E., Chabrol, F., Bony, G., and Cancedda, L. (2010) GABAergic control of neurite outgrowth and remodeling during development and adult neurogenesis: general rules and differences in diverse systems, Front. Cell Neurosci., 4, 11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rushton, D. J., Mattis, V. B., Svendsen, C. N., Allen, N. D., and Kemp, P. J. (2013) Stimulation of GABA–induced Ca2+ influx enhances maturation of human induced pluripotent stem cell–derived neurons, PLoS One, 8, e81031.

    Book  Google Scholar 

  33. Paoletti, P., Bellone, C., and Zhou, Q. (2013) NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease, Nat. Rev. Neurosci., 14, 383–400.

    Article  CAS  PubMed  Google Scholar 

  34. Hartfield, E. M., Yamasaki–Mann, M., Ribeiro Fernandes, H. J., Vowles, J., James, W. S., Cowley, S. A., and Wade–Martins, R. (2014) Physiological characterisation of human iPS–derived dopaminergic neurons, PLoS One, 9, e87388.

    Book  Google Scholar 

  35. Stanslowsky, N., Haase, A., Martin, U., Naujock, M., Leffler, A., Dengler, R., and Wegner, F. (2014) Functional differentiation of midbrain neurons from human cord blood–derived induced pluripotent stem cells, Stem Cell Res. Ther., 5, 35.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bagasrawala, I., Memi, F., Radonjic, N., and Zecevic, N. (2017) N–Methyl–D–aspartate receptor expression patterns in the human fetal cerebral cortex, Cereb. Cortex, 27, 5041–5053.

    PubMed  Google Scholar 

  37. Skilbeck, K. J., Johnston, G. A., and Hinton, T. (2010) Stress and GABA receptors, J. Neurochem., 112, 1115–1130.

    Article  CAS  PubMed  Google Scholar 

  38. Momcilovic, O., Liu, Q., Swistowski, A., Russo–Tait, T., Zhao, Y., Rao, M. S., and Zeng, X. (2014) Genome wide profiling of dopaminergic neurons derived from human embryonic and induced pluripotent stem cells, Stem Cells Dev., 23, 406–420.

    Article  CAS  PubMed  Google Scholar 

  39. Gulacsi, A., Lee, C. R., Sik, A., Viitanen, T., Kaila, K., Tepper, J. M., and Freund, T. F. (2003) Cell type–specific differences in chloride–regulatory mechanisms and GABA(A) receptor–mediated inhibition in rat substantia nigra, J. Neurosci., 23, 8237–8246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kaila, K., Price, T. J., Payne, J. A., Puskarjov, M., and Voipio, J. (2014) Cation–chloride cotransporters in neu–ronal development, plasticity and disease, Nat. Rev. Neurosci., 15, 637–654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang, C., Liu, F., Patterson, T. A., Paule, M. G., and Slikker, W., Jr. (2017) Relationship between ketamine–induced developmental neurotoxicity and NMDA recep–tor–mediated calcium influx in neural stem cell–derived neurons, Neurotoxicology, 60, 254–259.

    Article  CAS  PubMed  Google Scholar 

  42. Kritis, A. A., Stamoula, E. G., Paniskaki, K. A., and Vavilis, T. D. (2015) Researching glutamate–induced cyto–toxicity in different cell lines: a comparative/collective analysis/study, Front. Cell Neurosci., 9, 1–18.

    Article  CAS  Google Scholar 

  43. Kikuchi, S., and Kim, S. U. (1993) Glutamate neurotoxic–ity in mesencephalic dopaminergic neurons in culture, J. Neurosci. Res., 36, 558–569.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Antonov.

Additional information

Published in Russian in Biokhimiya, 2019, Vol. 84, No. 3, pp. 436–447.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonov, S.A., Novosadova, E.V., Kobylyansky, A.G. et al. Expression and Functional Properties of NMDA and GABAA Receptors during Differentiation of Human Induced Pluripotent Stem Cells into Ventral Mesencephalic Neurons. Biochemistry Moscow 84, 310–320 (2019). https://doi.org/10.1134/S0006297919030131

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297919030131

Keywords

Navigation