Skip to main content
Log in

Applying Patient-Specific Induced Pluripotent Stem Cells to Create a Model of Hypertrophic Cardiomyopathy

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Generation of patient-specific induced pluripotent stem cells (iPSCs) and their subsequent differentiation into cardiomyocytes opened new opportunities for studying pathogenesis of inherited cardiovascular diseases. One of these diseases is hypertrophic cardiomyopathy (HCM) for which no efficient therapy methods have been developed so far. In this study, the approach based on patient-specific iPSCs was applied to create a model of the disease. Genetic analysis of a hypertrophic cardiomyopathy patient revealed R326Q mutation in the MYBPC3 gene. iPSCs of the patient were generated and characterized. The cells were differentiated into cardiomyocytes together with the control iPSCs from a healthy donor. The patient’s iPSC-derived cardiomyocytes exhibited early HCM features, such as abnormal calcium handling and increased intracellular calcium concentration. Therefore, cardiomyocytes obtained by directed differentiation of iPSCs from the HCM patient can be used as a model system to study HCM pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DAPI:

4′,6-diamidino-2-phenylindole

HCM:

hypertrophic cardiomyopathy

iPSCs:

induced pluripotent stem cells

MLC2:

ventricular form of the myosin light chain 2

MNCs:

mononuclear cells

MYBPC3:

cardiac myosin-binding protein C

References

  1. Maron, B. J. (2002) Hypertrophic cardiomyopathy: a sys–tematic review, JAMA, 287, 1308–1320.

    PubMed  Google Scholar 

  2. Maron, B. J., Maron, M. S., and Semsarian, C. (2012) Genetics of hypertrophic cardiomyopathy after 20 years: clinical perspectives, J. Am. Coll. Cardiol., 60, 705–715.

    Article  PubMed  Google Scholar 

  3. Houston, B. A., and Stevens, G. R. (2014) Hypertrophic cardiomyopathy: a review, Clin. Med. Insights Cardiol., 8, 53–65.

    PubMed  Google Scholar 

  4. Semsarian, C., Ingles, J., Maron, M. S., and Maron, B. J. (2015) New perspectives on the prevalence of hypertrophic cardiomyopathy, J. Am. Coll. Cardiol., 65, 1249–1254.

    Article  PubMed  Google Scholar 

  5. Yang, Q., Sanbe, A., Osinska, H., Hewett, T. E., Klevitsky, R., and Robbins, J. (1998) A mouse model of myosin bind–ing protein C human familial hypertrophic cardiomyopa–thy, J. Clin. Invest., 102, 1292–1300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Marian, A. J., Wu, Y., Lim, D. S., McCluggage, M., Youker, K., Yu, Q. T., Brugada, R., DeMayo, F., Quinones, M., and Roberts, R. (1999) A transgenic rabbit model for human hypertrophic cardiomyopathy, J. Clin. Invest., 104, 1683–1692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Semsarian, C., Ahmad, I., Giewat, M., Georgakopoulos, D., Schmitt, J. P., McConnell, B. K., Reiken, S., Mende, U., Marks, A. R., Kass, D. A., Seidman, C. E., and Seidman, J. G. (2002) The L–type calcium channel inhibitor diltiazem prevents cardiomyopathy in a mouse model, J. Clin. Invest., 109, 1013–1020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Salama, G., and London, B. (2007) Mouse models of long QT syndrome, J. Physiol., 578, 43–53.

    Article  CAS  PubMed  Google Scholar 

  9. Ross, S. B., Fraser, S. T., and Semsarian, C. (2016) Induced pluripotent stem cells in the inherited cardiomyo–pathies: from disease mechanisms to novel therapies, Trends Cardiovasc. Med., 26, 663–672.

    Article  PubMed  Google Scholar 

  10. Takahashi, K., and Yamanaka, S. (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors, Cell, 126, 663–676.

    Article  CAS  PubMed  Google Scholar 

  11. Yu, J., Vodyanik, M. A., Smuga–Otto, K., Antosiewicz–Bourget, J., Frane, J. L., Tian, S., Nie, J., Jonsdottir, G. A., Ruotti, V., Stewart, R., Slukvin, I. I., and Thomson, J. A. (2007) Induced pluripotent stem cell lines derived from human somatic cells, Science, 318, 1917–1920.

    Article  CAS  PubMed  Google Scholar 

  12. Lan, F., Lee, A. S., Liang, P., Sanchez–Freire, V., Nguyen, P. K., Wang, L., Han, L., Yen, M., Wang, Y., Sun, N., Abilez, O. J., Hu, S., Ebert, A. D., Navarrete, E. G., Simmons, C. S., Wheeler, M., Pruitt, B., Lewis, R., Yamaguchi, Y., Ashley, E. A., Bers, D. M., Robbins, R. C., Longaker, M. T., and Wu, J. C. (2013) Abnormal calcium handling properties underlie familial hypertrophic car–diomyopathy pathology in patient–specific induced pluripotent stem cells, Cell Stem Cell, 12, 101–113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Han, L., Li, Y., Tchao, J., Kaplan, A. D., Lin, B., Mich–Basso, J., Lis, A., Hassan, N., London, B., Bett, G. C., Tobita, K., Rasmusson, R. L., and Yang, L. (2014) Study familial hypertrophic cardiomyopathy using patient–specif–ic induced pluripotent stem cells, Cardiovasc. Res., 104, 258–269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tanaka, A., Yuasa, S., Mearini, G., Egashira, T., Seki, T., Kodaira, M., Kusumoto, D., Kuroda, Y., Okata, S., Suzuki, T., Inohara, T., Arimura, T., Makino, S., Kimura, K., Kimura, A., Furukawa, T., Carrier, L., Node, K., and Fukuda, K. (2014) Endothelin–1 induces myofibrillar dis–array and contractile vector variability in hypertrophic car–diomyopathy–induced pluripotent stem cell–derived car–diomyocytes, J. Am. Heart Assoc., 3, e001263.

    Google Scholar 

  15. Medvedev, S. P., Grigor’eva, E. V., Shevchenko, A. I., Malakhova, A. A., Dementyeva, E. V., Shilov, A. A., Pokushalov, E. A., Zaidman, A. M., Aleksandrova, M. A., Plotnikov, E. Y., Sukhikh, G. T., and Zakian, S. M. (2011) Human induced pluripotent stem cells derived from fetal neural stem cells successfully undergo directed differentia–tion into cartilage, Stem Cells Dev., 20, 1099–1112.

    Article  CAS  PubMed  Google Scholar 

  16. Burridge, P. W., Matsa, E., Shukla, P., Lin, Z. C., Churko, J. M., Ebert, A. D., Lan, F., Diecke, S., Huber, B., Mordwinkin, N. M., Plews, J. R., Abilez, O. J., Cui, B., Gold, J. D., and Wu, J. C. (2014) Chemically defined generation of human cardiomyocytes, Nat. Methods, 11, 855–860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lian, X., Zhang, J., Azarin, S. M., Zhu, K., Hazeltine, L. B., Bao, X., Hsiao, C., Kamp, T. J., and Palecek, S. P. (2013) Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/β–catenin signal–ing under fully defined conditions, Nat. Protoc., 8, 162–175.

    Article  CAS  PubMed  Google Scholar 

  18. Slotvitsky, M. M., Tsvelaya, V. A., Frolova, S. R., Dement’eva, E. V., and Agladze, K. I. (2018) The study of the functionality of cardiomyocytes obtained from induced pluripotent stem cells for the modeling of cardiac arrhyth–mias based on long QT syndrome, Vavilov Zh. Genet. Selek., 22, 187–195.

    Google Scholar 

  19. Okita, K., Yamakawa, T., Matsumura, Y., Sato, Y., Amano, N., Watanabe, A., Goshima, N., and Yamanaka, S. (2013) An efficient nonviral method to generate integration–free human–induced pluripotent stem cells from cord blood and peripheral blood cells, Stem Cells, 31, 458–466.

    Article  CAS  PubMed  Google Scholar 

  20. Valetdinova, K. R. (2016) Generating a Model System of Spinal Muscle Atrophy Using Human Induced Pluripotent Stem Cells: PhD theses [in Russian], ICG SB Russian Academy of Sciences, Novosibirsk.

    Google Scholar 

  21. Pasipoularides, A. (2018) Challenges and controversies in hypertrophic cardiomyopathy: clinical, genomic and basic science perspectives, Rev. Esp. Cardiol. (Engl. Ed.), 71, 132–138.

    Article  Google Scholar 

  22. Konno, T., Chang, S., Seidman, J. G., and Seidman, C. E. (2010) Genetics of hypertrophic cardiomyopathy, Curr. Opin. Cardiol., 25, 205–209.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Dementyeva.

Additional information

Published in Russian in Biokhimiya, 2019, Vol. 84, No. 3, pp. 413–422.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dementyeva, E.V., Medvedev, S.P., Kovalenko, V.R. et al. Applying Patient-Specific Induced Pluripotent Stem Cells to Create a Model of Hypertrophic Cardiomyopathy. Biochemistry Moscow 84, 291–298 (2019). https://doi.org/10.1134/S0006297919030118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297919030118

Keywords

Navigation