Skip to main content
Log in

Extracellular MicroRNAs and Mitochondrial DNA as Potential Biomarkers of Arrhythmogenic Cardiomyopathy

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Differential diagnosis of arrhythmogenic cardiomyopathy (ACM) during the disease latent phase is a challenging clinical problem that requires identification of early ACM biomarkers. Because extracellular nucleic acids are stable, specific, and can be easily detected, they can be used as reliable biomarkers of various diseases. In this study, we analyzed the levels of extracellular microRNAs and mitochondrial DNA in the conditioned medium collected from cardiomyocytes differentiated from induced pluripotent stem cells of ACM patients and healthy donor. Several microRNAs were expressed differently by the affected and healthy cardiomyocytes; therefore, they could be considered as potential ACM biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ACM:

arrhythmogenic cardiomyopathy

DAPI:

4′,6-diamidino-2-phenylindole

iPSC:

induced pluripotent stem cell

miR:

microRNA (miRNA)

mtDNA:

mitochondrial DNA

PBS:

phosphate buffered saline

References

  1. Thiene, G., Nava, A., Corrado, D., Rossi, L., and Pennelli, N. (1988) Right ventricular cardiomyopathy and sudden death in young people, N. Engl. J. Med., 318, 129–133.

    Article  CAS  PubMed  Google Scholar 

  2. Lazzarini, E., Jongbloed, J. D. H., Pilichou, K., Thiene, G., Basso, C., Bikker, H., Charbon, B., Swertz, M., van Tintelen, J. P., and van der Zwaag, P. A. (2015) The ARVD/C genetic variants database: 2014 update, Hum. Mutat., 36, 403–410.

    Article  CAS  PubMed  Google Scholar 

  3. Corrado, D., Basso, C., and Thiene, G. (2009) Arrhythmogenic right ventricular cardiomyopathy: an update, Heart, 95, 766–773.

    Article  CAS  PubMed  Google Scholar 

  4. Bartel, D. P. (2004) MicroRNAs: genomics, biogenesis, mechanism, and function, Cell, 116, 281–297.

    Article  CAS  PubMed  Google Scholar 

  5. He, L., and Hannon, G. J. (2004) MicroRNAs: small RNAs with a big role in gene regulation, Nat. Rev. Genet., 5, 522–531.

    Article  CAS  PubMed  Google Scholar 

  6. Sohel, M. H. (2016) Extracellular/circulating microRNAs: release mechanisms, functions and challenges, Achiev. Life Sci., 10, 175–186.

    Article  Google Scholar 

  7. Arroyo, J. D., Chevillet, J. R., Kroh, E. M., Ruf, I. K., Pritchard, C. C., Gibson, D. F., Mitchell, P. S., Bennett, C. F., Pogosova–Agadjanyan, E. L., Stirewalt, D. L., Tait, J. F., and Tewari, M. (2011) Argonaute 2 complexes carry a pop–ulation of circulating microRNAs independent of vesicles in human plasma, Proc. Natl. Acad. Sci. USA, 108, 5003–5008.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Turchinovich, A., Weiz, L., Langheinz, A., and Burwinkel, B. (2011) Characterization of extracellular circulating microRNA, Nucleic Acids Res., 39, 7223–7233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vickers, K. C., Palmisano, B. T., Shoucri, B. M., Shamburek, R. D., and Remaley, A. T. (2011) MicroRNAs are transported in plasma and delivered to recipient cells by high–density lipoproteins, Nat. Cell Biol., 13, 423–433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wagner, J., Riwanto, M., Besler, C., Knau, A., Fichtlscherer, S., Roxe, T., Zeiher, A. M., Landmesser, U., and Dimmeler, S. (2013) Characterization of levels and cel–lular transfer of circulating lipoprotein–bound microRNAs, Arterioscler. Thromb. Vasc. Biol., 33, 1392–1400.

    Article  CAS  PubMed  Google Scholar 

  11. Sommariva, E., D’Alessandra, Y., Farina, F. M., Casella, M., Cattaneo, F., Catto, V., Chiesa, M., Stadiotti, I., Brambilla, S., Dello Russo, A., Carbucicchio, C., Vettor, G., Riggio, D., Sandri, M. T., Barbuti, A., Vernillo, G., Muratori, M., Dal Ferro, M., Sinagra, G., Moimas, S., Giacca, M., Colombo, G. I., Pompilio, G., and Tondo, C. (2017) MiRNA–320a as a potential novel circulating bio–marker of arrhythmogenic cardiomyopathy, Sci. Rep., 7, 4802, doi: 10.1038/s41598–017–05001–z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang, H., Liu, S., Dong, T., Yang, J., Xie, Y., Wu, Y., Kang, K., Hu, S., Gou, D., and Wei, Y. (2016) Profiling of differentially expressed microRNAs in arrhythmogenic right ventricular cardiomyopathy, Sci. Rep., 6, 28101, doi: 10.1038/srep28101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sun, J.–Y., Huang, Y., Li, J.–P., Zhang, X., Wang, L., Meng, Y.–L., Yan, B., Bian, Y.–Q., Zhao, J., Wang, W.–Z., Yang, A.–G., and Zhang, R. (2012) MicroRNA–320a sup–presses human colon cancer cell proliferation by directly targeting beta–catenin, Biochem. Biophys. Res. Commun., 420, 787–792.

    Article  CAS  PubMed  Google Scholar 

  14. Huang, K., Zhang, J.–X., Han, L., You, Y.–P., Jiang, T., Pu, P.–Y., and Kang, C.–S. (2010) MicroRNA roles in beta–catenin pathway, Mol. Cancer, 9, 252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hashimi, S. T., Fulcher, J. A., Chang, M. H., Gov, L., Wang, S., and Lee, B. (2009) MicroRNA profiling identi–fies miR–34a and miR–21 and their target genes JAG1 and WNT1 in the coordinate regulation of dendritic cell differ–entiation, Blood, 114, 404–414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lin, C.–W., Chang, Y.–L., Chang, Y.–C., Lin, J.–C., Chen, C.–C., Pan, S.–H., Wu, C.–T., Chen, H.–Y., Yang, S.–C., Hong, T.–M., and Yang, P.–C. (2013) MicroRNA–135b pro–motes lung cancer metastasis by regulating multiple targets in the Hippo pathway and LZTS1, Nat. Commun., 4, 1877.

    Article  CAS  PubMed  Google Scholar 

  17. Yamada, S., Hsiao, Y.–W., Chang, S.–L., Lin, Y.–J., Lo, L.–W., Chung, F.–P., Chiang, S.–J., Hu, Y.–F., Tuan, T.–C., Chao, T.–F., Liao, J.–N., Lin, C.–Y., Chang, Y.–T., Te, A. L. D., Tsai, Y.–N., and Chen, S.–A. (2018) Circulating microRNAs in arrhythmogenic right ventricular cardiomyo–pathy with ventricular arrhythmia, Europace, 20, f37–f45.

    Google Scholar 

  18. Sagan, L. (1967) On the origin of mitosing cells, J. Theor. Biol., 14, 255–274.

    Article  CAS  PubMed  Google Scholar 

  19. Gray, M. W., Burger, G., and Lang, B. F. (2001) The origin and early evolution of mitochondria, Genome Biol., 2, doi: 10.1186/gb–2001–2–6–reviews1018.

    Google Scholar 

  20. Zhang, Q., Raoof, M., Chen, Y., Sumi, Y., Sursal, T., Junger, W., Brohi, K., Itagaki, K., and Hauser, C. J. (2010) Circulating mitochondrial DAMPs cause inflammatory responses to injury, Nature, 464, 104–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chiu, R. W. K., Chan, L. Y. S., Lam, N. Y. L., Tsui, N. B. Y., Ng, E. K. O., Rainer, T. H., and Lo, Y. M. D. (2003) Quantitative analysis of circulating mitochondrial DNA in plasma, Clin. Chem., 49, 719–726.

    Article  CAS  PubMed  Google Scholar 

  22. Bliksoen, M., Mariero, L. H., Ohm, I. K., Haugen, F., Yndestad, A., Solheim, S., Seljeflot, I., Ranheim, T., Andersen, G. O., Aukrust, P., Valen, G., and Vinge, L. E. (2012) Increased circulating mitochondrial DNA after myocardial infarction, Int. J. Cardiol., 158, 132–134.

    Article  PubMed  Google Scholar 

  23. Sudakov, N. P., Apartsin, K. A., Lepekhova, S. A., Nikiforov, S. B., Katyshev, A. I., Lifshits, G. I., Vybivantseva, A. V., and Konstantinov, Y. M. (2017) The level of free circulating mitochondrial DNA in blood as predictor of death in case of acute coronary syndrome, Eur. J. Med. Res., 22, 1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Oka, T., Hikoso, S., Yamaguchi, O., Taneike, M., Takeda, T., Tamai, T., Oyabu, J., Murakawa, T., Nakayama, H., Nishida, K., Akira, S., Yamamoto, A., Komuro, I., and Otsu, K. (2012) Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure, Nature, 485, 251–255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ye, W., Tang, X., Yang, Z., Liu, C., Zhang, X., Jin, J., and Lyu, J. (2017) Plasma–derived exosomes contribute to inflammation via the TLR9–NF–kappaB pathway in chron–ic heart failure patients, Mol. Immunol., 87, 114–121.

    Article  CAS  PubMed  Google Scholar 

  26. Khudiakov, A. A., Kostina, D. A., Kostareva, A. A., Tomilin, A. N., and Malashicheva, A. B. (2015) Influence of mutations in the plakophilin–2 gene on the activity of the canonic signaling pathway Wnt, Tsitologiya, 57, 868–875.

    CAS  Google Scholar 

  27. Khudiakov, A., Kostina, D., Zlotina, A., Yany, N., Sergushichev, A., Pervunina, T., Tomilin, A., Kostareva, A., and Malashicheva, A. (2017) Generation of iPSC line from patient with arrhythmogenic right ventricular cardiomy–opathy carrying mutations in PKP2 gene, Stem Cell Res., 24, 85–88.

    Article  CAS  PubMed  Google Scholar 

  28. Burridge, P. W., Matsa, E., Shukla, P., Lin, Z. C., Churko, J. M., Ebert, A. D., Lan, F., Diecke, S., Huber, B., Mordwinkin, N. M., Plews, J. R., Abilez, O. J., Cui, B., Gold, J. D., and Wu, J. C. (2014) Chemically defined gener–ation of human cardiomyocytes, Nat. Methods, 11, 855–860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rothfuss, O., Gasser, T., and Patenge, N. (2010) Analysis of differential DNA damage in the mitochondrial genome employing a semi–long run real–time PCR approach, Nucleic Acids Res., 38, e24.

    Book  Google Scholar 

  30. Chen, X., Ba, Y., Ma, L., Cai, X., Yin, Y., Wang, K., Guo, J., Zhang, Y., Chen, J., Guo, X., Li, Q., Li, X., Wang, W., Zhang, Y., Wang, J., Jiang, X., Xiang, Y., Xu, C., Zheng, P., Zhang, J., Li, R., Zhang, H., Shang, X., Gong, T., Ning, G., Wang, J., Zen, K., Zhang, J., and Zhang, C.–Y. (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases, Cell Res., 18, 997–1006.

    Article  CAS  PubMed  Google Scholar 

  31. Gupta, S. K., Bang, C., and Thum, T. (2010) Circulating microRNAs as biomarkers and potential paracrine media–tors of cardiovascular disease, Circ. Cardiovasc. Genet., 3, 484–488.

    Article  CAS  PubMed  Google Scholar 

  32. Wang, K., Zhang, S., Marzolf, B., Troisch, P., Brightman, A., Hu, Z., Hood, L. E., and Galas, D. J. (2009) Circulating microRNAs, potential biomarkers for drug–induced liver injury, Proc. Natl. Acad. Sci. USA, 106, 4402–4407.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Casini, S., Verkerk, A. O., and Remme, C. A. (2017) Human iPSC–derived cardiomyocytes for investigation of disease mechanisms and therapeutic strategies in inherited arrhythmia syndromes: strengths and limitations, Cardiovasc. Drugs Ther., 31, 325–344.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Fu, J.–D., Rushing, S. N., Lieu, D. K., Chan, C. W., Kong, C.–W., Geng, L., Wilson, K. D., Chiamvimonvat, N., Boheler, K. R., Wu, J. C., Keller, G., Hajjar, R. J., and Li, R. A. (2011) Distinct roles of microRNA–1 and–499 in ventricular specification and functional maturation of human embryonic stem cell–derived cardiomyocytes, PLoS One, 6, e27417.

    Book  Google Scholar 

  35. Dubash, A. D., Kam, C. Y., Aguado, B. A., Patel, D. M., Delmar, M., Shea, L. D., and Green, K. J. (2016) Plakophilin–2 loss promotes TGF–β1/p38 MAPK–depend–ent fibrotic gene expression in cardiomyocytes, J. Cell Biol., 212, 425–438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen, S. N., Gurha, P., Lombardi, R., Ruggiero, A., Willerson, J. T., and Marian, A. J. (2014) The Hippo path–way is activated and is a causal mechanism for adipogenesis in arrhythmogenic cardiomyopathy, Circ. Res., 114, 454–468.

    Article  CAS  PubMed  Google Scholar 

  37. Kim, C., Wong, J., Wen, J., Wang, S., Wang, C., Spiering, S., Kan, N. G., Forcales, S., Puri, P. L., Leone, T. C., Marine, J. E., Calkins, H., Kelly, D. P., Judge, D. P., and Chen, H.–S. V. (2013) Studying arrhythmogenic right ven–tricular dysplasia with patient–specific iPSCs, Nature, 494, 105–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sommariva, E., Brambilla, S., Carbucicchio, C., Gambini, E., Meraviglia, V., Dello Russo, A., Farina, F. M., Casella, M., Catto, V., Pontone, G., Chiesa, M., Stadiotti, I., Cogliati, E., Paolin, A., Ouali Alami, N., Preziuso, C., D’Amati, G., Colombo, G. I., Rossini, A., Capogrossi, M. C., Tondo, C., and Pompilio, G. (2016) Cardiac mes–enchymal stromal cells are a source of adipocytes in arrhythmogenic cardiomyopathy, Eur. Heart J., 37, 1835–1846.

    Article  CAS  PubMed  Google Scholar 

  39. Kuwabara, Y., Ono, K., Horie, T., Nishi, H., Nagao, K., Kinoshita, M., Watanabe, S., Baba, O., Kojima, Y., Shizuta, S., Imai, M., Tamura, T., Kita, T., and Kimura, T. (2011) Increased microRNA–1 and microRNA–133a levels in serum of patients with cardiovascular disease indicate myocardial damage, Circ. Cardiovasc. Genet., 4, 446–454.

    Article  CAS  PubMed  Google Scholar 

  40. Thum, T., Gross, C., Fiedler, J., Fischer, T., Kissler, S., Bussen, M., Galuppo, P., Just, S., Rottbauer, W., Frantz, S., Castoldi, M., Soutschek, J., Koteliansky, V., Rosenwald, A., Basson, M. A., Licht, J. D., Pena, J. T. R., Rouhanifard, S. H., Muckenthaler, M. U., Tuschl, T., Martin, G. R., Bauersachs, J., and Engelhardt, S. (2008) MicroRNA–21 contributes to myocardial disease by stimu–lating MAP kinase signalling in fibroblasts, Nature, 456, 980–984.

    Article  CAS  PubMed  Google Scholar 

  41. Roy, S., Khanna, S., Hussain, S.–R. A., Biswas, S., Azad, A., Rink, C., Gnyawali, S., Shilo, S., Nuovo, G. J., and Sen, C. K. (2009) MicroRNA expression in response to murine myocardial infarction: miR–21 regulates fibroblast metalloprotease–2 via phosphatase and tensin homologue, Cardiovasc. Res., 82, 21–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Van Rooij, E., Sutherland, L. B., Thatcher, J. E., DiMaio, J. M., Naseem, R. H., Marshall, W. S., Hill, J. A., and Olson, E. N. (2008) Dysregulation of microRNAs after myocardial infarction reveals a role of miR–29 in cardiac fibrosis, Proc. Natl. Acad. Sci. USA, 105, 13027–13032.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Matkovich, S. J., Wang, W., Tu, Y., Eschenbacher, W. H., Dorn, L. E., Condorelli, G., Diwan, A., Nerbonne, J. M., and Dorn, G. W. (2010) MicroRNA–133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressure–overloaded adult hearts, Circ. Res., 106, 166–175.

    Article  CAS  PubMed  Google Scholar 

  44. Gerin, I., Bommer, G. T., McCoin, C. S., Sousa, K. M., Krishnan, V., and MacDougald, O. A. (2010) Roles for miRNANA–378/378* in adipocyte gene expression and lipogenesis, Am. J. Physiol. Endocrinol. Metab., 299, E198–206.

    Google Scholar 

  45. Beltrami, C., Besnier, M., Shantikumar, S., Shearn, A. I. U., Rajakaruna, C., Laftah, A., Sessa, F., Spinetti, G., Petretto, E., Angelini, G. D., and Emanueli, C. (2017) Human pericardial fluid contains exosomes enriched with cardiovascular–expressed microRNAs and promotes thera–peutic angiogenesis, Mol. Ther., 25, 679–693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Khudiakov.

Additional information

Russian Text © A. A. Khudiakov, N. A. Smolina, K. I. Perepelina, A. B. Malashicheva, A. A. Kostareva, 2019, published in Biokhimiya, 2019, Vol. 84, No. 3, pp. 392–403.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khudiakov, A.A., Smolina, N.A., Perepelina, K.I. et al. Extracellular MicroRNAs and Mitochondrial DNA as Potential Biomarkers of Arrhythmogenic Cardiomyopathy. Biochemistry Moscow 84, 272–282 (2019). https://doi.org/10.1134/S000629791903009X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629791903009X

Keywords

Navigation