Skip to main content
Log in

Identification of Amyloidogenic Regions in the Spine of Insulin Fibrils

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

To reveal conformational changes resulting in the formation of insulin fibrils, it is necessary to identify amyloidogenic regions in the structure of protein monomers. Different models of insulin fibrillogenesis have been proposed previously. However, precise regions responsible for the formation of amyloid fibrils have not been identified. Using bioinformatics programs for predicting amyloidogenic regions, we have determined some common amyloidogenic sequences in the structure of insulin monomers. The use of limited proteolysis and mass spectrometry analysis of the obtained protein fragments resistant to the action of proteases allowed us to identify amino acid sequences in the insulin structure that can form the spine of the insulin fibrils. The obtained results are in agreement with the earlier proposed model of fibril formation from the ring-like oligomers and can be used for designing insulin analogs resistant to amyloidogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

a.a.:

amino acid residue

LC-MS:

liquid chromatography/mass spectrometry

m/z :

mass-to-charge ratio

References

  1. Kelly, J. W. (1996) Alternative conformations of amyloido–genic proteins govern their behavior, Curr. Opin. Struct. Biol., 6, 11–17.

    Article  CAS  PubMed  Google Scholar 

  2. Dobson, C. M. (2001) Protein folding and its links with human disease, Biochem. Soc. Symp., 68, 1–26.

    Article  CAS  Google Scholar 

  3. Galzitskaia, O. V., Garbuzinskii, S. A., and Lobanov, M. Iu. (2006) A search for amyloidogenic regions in protein chain, Mol. Biol. (Moscow), 40, 910–918.

    CAS  Google Scholar 

  4. Sipe, J. D., Benson, M. D., Buxbaum, J. N., Ikeda, S., Merlini, G., Saraiva, M. J., and Westermark, P. (2012) Amyloid fibril protein nomenclature: 2012 recommenda–tions from the Nomenclature Committee of the International Society of Amyloidosis, Amyloid, 19, 167–170.

    Article  CAS  PubMed  Google Scholar 

  5. O’Donnell, C. W., Waldispuhl, J., Lis, M., Halfmann, R., Devadas, S., Lindquist, S., and Berger, B. (2011). A method for probing the mutational landscape of amyloid structure, Bioinformatics, 27, 34–42.

    Google Scholar 

  6. Sanger, F., and Tuppy, H. (1951) The amino–acid sequence in the phenylalanyl chain of insulin. 1. The identification of lower peptides from partial hydrolysates, Biochem. J., 49, 463–481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sanger, F., and Tuppy, H. (1951) The amino–acid sequence in the phenylalanyl chain of insulin. 2. The investigation of peptides from enzymic hydrolysates, Biochem. J., 49, 481–490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Waugh, D. F. (1941) The properties of protein fibers pro–duced reversibly from soluble protein molecules, Am. J. Physiol., 133, 484–485.

    Google Scholar 

  9. Klunk, W. E., Pettegrew, J. W., and Abraham, D. J. (1989) Quantitative evaluation of congo red binding to amyloid–like proteins with a beta–pleated sheet conformation, J. Histochem. Cytochem., 37, 1273–1281.

    Article  CAS  PubMed  Google Scholar 

  10. Brange, J., Andersen, L., Laursen, E. D., Meyn, G., and Rasmussen, E. (1997) Toward understanding insulin fibril–lation, J. Pharm. Sci., 86, 517–525.

    Article  CAS  PubMed  Google Scholar 

  11. Selivanova, O. M., Grishin, S. Yu., Glyakina, A. V., Sadgyan, A. S., Ushakova, N. I., and Galzitskaya, O. V. (2018) Analysis of insulin analogs and the strategy of their further development, Biochemistry (Moscow), 83, 146–162.

    Article  Google Scholar 

  12. Baker, E. N., Blundell, T. L., Cutfield J. F., Cutfield, S. M., Dodson, E. J., Dodson, G. G., Hodgkin, D. M. C., Hubbard, R. E., Isaacs, N. W., Reynolds, C. D., Sakabe, K., Sakabe, N., and Vijayan, N. M. (1988) The structure of 2Zn pig insulin crystals at 1.5 Å resolution, Philos. Trans. R. Soc. Lond. B Biol. Sci., 319, 369–456.

    Article  CAS  PubMed  Google Scholar 

  13. Cutfield, J. F., Cutfield, S. M., Dodson, E. J., Dodson, G. G., Emdin, S. F., and Reynolds, C. D. (1979) Structure and biological activity of hagfish insulin, J. Mol. Biol., 132, 85–100.

    Article  CAS  PubMed  Google Scholar 

  14. Frankær, C. G., Sonderby, P., Bang, M. B., Mateiu, R. V., Groenning, M., Bukrinski, J., and Harris, P. (2017) Insulin fibrillation: the influence and coordination of Zn2+, J. Struct. Biol., 199, 27–38.

    Article  CAS  PubMed  Google Scholar 

  15. Phillips, N. B., Whittaker, J., Ismail–Beigi, F., and Weiss, M. A. (2012) Insulin fibrillation and protein design: topo–logical resistance of single–chain analogs to thermal degra–dation with application to a pump reservoir, J. Diabetes Sci. Technol., 6, 277–288.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Nielsen, L., Frokjaer, S., Brange, J., Uversky, V. N., and Fink, A. L. (2001) Probing the mechanism of insulin fibril formation with insulin mutants, Biochemistry, 40, 8397–8409.

    Article  CAS  PubMed  Google Scholar 

  17. Ahmad, A., Millett, I. S., Doniach, S., Uversky, V. N., and Fink, A. L. (2003) Partially folded intermediates in insulin fibrillation, Biochemistry, 42, 11404–11416.

    Article  CAS  PubMed  Google Scholar 

  18. Vestergaard, B., Groenning, M., Roessle, M., Kastrup, J. S., Weert, M., Flink, J. M., Frokjaer, S., Gajhede, M., and Svergun, D. I. (2007) A helical structural nucleus is the pri–mary elongating unit of insulin amyloid fibrils, PLoS Biol., 5, 134–146.

    Article  CAS  Google Scholar 

  19. Jimenez, J. L., Nettleton, E. J., Bouchard, M., Robinson, C. V., Dobson, C. M., and Saibil, H. R. (2002) The protofilament structure of insulin amyloid fibrils, Proc. Natl. Acad. Sci. USA, 99, 9196–9201.

    Article  CAS  PubMed  Google Scholar 

  20. Kajava, A. V., Baxa, U., and Steven, A. C. (2010) β–Arcades: recurring motifs in naturally occurring and dis–ease–related amyloid fibrils, FASEB J., 24, 1311–1319.

    CAS  Google Scholar 

  21. Selivanova, O. M., Suvorina, M. Y., Surin, A. K., Dovidchenko, N. V., and Galzitskaya, O. V. (2017) Insulin and lispro insulin: what is common and different in their behavior? Curr. Protein Pept. Sci., 18, 57–64.

    Article  CAS  PubMed  Google Scholar 

  22. Meersman, F., and Dobson, C. M. (2006) Probing the pressure–temperature stability of amyloid fibrils provides new insights into their molecular properties, Biochim. Biophys. Acta, 1764, 452–460.

    Article  CAS  PubMed  Google Scholar 

  23. Malisauskas, M., Weise, C., Yanamandra, K., Wolf–Watz, M., and Morozova–Roche, L. (2010) Lability landscape and protease resistance of human insulin amyloid: a new insight into its molecular properties, J. Mol. Biol., 396, 60–74.

    Article  CAS  PubMed  Google Scholar 

  24. Kheterpal, I., Williams, A., Murphy, C., Bledsoe, B., and Wetzel, R. (2001) Structural features of the Abeta amyloid fibril elucidated by limited proteolysis, Biochemistry, 40, 11757–11767.

    Article  CAS  PubMed  Google Scholar 

  25. Piejko, M., Dec, R., Babenko, V., Hoang, A., Szewczyk, M., Mak, P., and Dzwolak, W. (2015) Highly amyloido–genic two–chain peptide fragments are released upon partial digestion of insulin with pepsin, J. Biol. Chem., 290, 5947–5958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Surin, A. K., Grigorashvili, E. I., Suvorina, M. Y., Selivanova, O. M., and Galzitskaya, O. V. (2016) Determination of regions involved in amyloid fibril formation for Aβ(1–40) peptide, Biochemistry (Moscow), 81, 762–769.

    Article  CAS  Google Scholar 

  27. Selivanova, O. M., Suvorina, M. Y., Dovidchenko, N. V., Eliseeva, I. A., Surin, A. K., Finkelstein, A. V., Schmatchenko, V. V., and Galzitskaya, O. V. (2014) How to determine the size of folding nuclei of protofibrils from the concentration dependence of the rate and lag–time of aggregation. II. Experimental application for insulin and LysPro insulin: aggregation morphology, kinetics, and sizes of nuclei, J. Phys. Chem. B, 118, 1198–1206.

    Article  CAS  PubMed  Google Scholar 

  28. Porter, R. R. (1953) Partition chromatography of insulin and other proteins, Biochem. J., 53, 320–328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Garbuzynskiy, S. O., Lobanov, M. Y., and Galzitskaya, O. V. (2010) FoldAmyloid: a method of prediction of amy–loidogenic regions from protein sequence, Bioinformatics, 26, 326–332.

    Article  CAS  PubMed  Google Scholar 

  30. Ahmed, A. B., Znassi, N., Chateau, M.–T., and Kajava, A. V. (2015) A structure–based approach to predict predisposi–tion to amyloidosis, Alzheimers Dement., 11, 681–690.

    Article  PubMed  Google Scholar 

  31. Trovato, A., Seno, F., and Tosatto, S. C. E. (2007) The PASTA server for protein aggregation prediction, Protein Eng. Des. Sel., 20, 521–523.

    Article  CAS  PubMed  Google Scholar 

  32. Walsh, I., Seno, F., Tosatto, S. C. E., and Trovato, A. (2014) PASTA 2.0: an improved server for protein aggrega–tion prediction, Nucleic Acids Res., 42, 301–307.

    Article  CAS  Google Scholar 

  33. Maurer–Stroh, S., Debulpaep, M., Kuemmerer, N., Lopez de la Paz, M., Martins, I. C., Reumers, J., Morris, K. L., Copland, A., Serpell, L., Serrano, L., Schymkowitz, J. W. H., and Rousseau, F. (2010) Exploring the sequence deter–minants of amyloid structure using position–specific scor–ing matrices, Nat. Methods, 7, 237–242.

    Article  CAS  PubMed  Google Scholar 

  34. Conchillo–Sole, O., de Groot, N. S., Aviles, F. X., Vendrell, J., Daura, X., and Ventura, S. (2007) AGGRESCAN: a server for the prediction and evaluation of “hot spots” of aggregation in polypeptides, BMC Bioinformatics, 8, 1–17.

    Article  CAS  Google Scholar 

  35. Zurdo, J., Guijarro, J. I., and Dobson, C. M. (2001) Preparation and characterization of purified amyloid fib–rils, J. Am. Chem. Soc., 123, 8141–8142.

    Article  CAS  PubMed  Google Scholar 

  36. Galzitskaya, O. V., and Selivanova, O. M. (2017) Rosetta stone for amyloid fibrils: the key role of ring–like oligomers in amyloidogenesis, J. Alzheimers Dis., 59, 785–795.

    Article  CAS  PubMed  Google Scholar 

  37. Olsen, J. V., Ong, S. E., and Mann, M. (2004) Trypsin cleaves exclusively C–terminal to arginine and lysine residues, Mol. Cell. Proteomics, 3, 608–614.

    Article  CAS  PubMed  Google Scholar 

  38. Appel, W. (1986) Chymotrypsin: molecular and catalytic properties, Clin. Biochem., 19, 317–322.

    Article  CAS  PubMed  Google Scholar 

  39. Kraus, E., Kiltz, H. H., and Femfert, U. F. (1976) The specificity of proteinase K against oxidized insulin B chain, Hoppe Seylers Z. Physiol. Chem., 357, 233–237.

    Article  CAS  PubMed  Google Scholar 

  40. Morihara, K., and Tszuki, H. (1975) Specificity of pro–teinase K from Tritirachium album limber for synthetic pep–tides, Agricult. Biol. Chem., 39, 1489–1492.

    CAS  Google Scholar 

  41. Polverino de Laureto, P., Taddei, N., Frare, E., Capanni, C., Costantini, S., Zurdo, J., Chiti, F., Dobson, C. M., and Fontana, A. (2003) Protein aggregation and amyloid fibril formation by an SH3 domain probed by limited proteolysis, J. Mol. Biol., 334, 129–141.

    Article  CAS  Google Scholar 

  42. Selivanova, O. M., and Galzitskaya, O. V. (2012) Structural polymorphism and possible pathways of amyloid fibril for–mation on the example of insulin protein, Biochemistry (Moscow), 77, 1237–1247.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Surin.

Additional information

Published in Russian in Biokhimiya, 2019, Vol. 84, No. 1, pp. 128–137.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surin, A.K., Grishin, S.Y. & Galzitskaya, O.V. Identification of Amyloidogenic Regions in the Spine of Insulin Fibrils. Biochemistry Moscow 84, 47–55 (2019). https://doi.org/10.1134/S0006297919010061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297919010061

Keywords

Navigation