Skip to main content
Log in

Mobile Loop in the Active Site of Metallocarboxypeptidases as an Underestimated Determinant of Substrate Specificity

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

It is generally accepted that the primary specificity of metallocarboxypeptidases is mainly determined by the structure of the so–called primary specificity pocket. However, the G215S/A251G/T257A/D260G/T262D mutant of carboxypeptidase T from Thermoactinomyces vulgaris (CPT) with the primary specificity pocket fully reproducing the one in pancreatic carboxypeptidase B (CPB) retained the broad, mainly hydrophobic substrate specificity of the wild–type enzyme. In order to elucidate factors affecting substrate specificity of metallocarboxypeptidases and the reasons for the discrepancy with the established views, we have solved the structure of the complex of the CPT G215S/A251G/T257A/D260G/T262D mutant with the transition state analogue N–sulfamoyl–L–phenylalanine at a resolution of 1.35 Å and compared it with the structure of similar complex formed by CPB. The comparative study revealed a previously underestimated structural determinant of the substrate specificity of metallocarboxypeptidases and showed that even if substitution of five amino acid residues in the primary specificity pocket results in its almost complete structural correspondence to the analogous pocket in CPB, this does not lead to fundamental changes in the substrate specificity of the mutant enzyme due to the differences in the structure of the mobile loop located at the active site entrance that affects the substrate–induced conformational rearrangements of the active site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BSA:

buried surface area

CPB:

carboxypeptidase B from porcine pancreas

CPT:

carboxypeptidase T from Thermoactinomyces vulgaris

CPT5:

CPT mutant with A243G, T250A, A253G, D260G, T262D substitutions

CPTwt:

wild–type carboxypeptidase T

CPU:

carboxypeptidase U

CPO:

carboxypeptidase O

SPhe:

N–sulfamoyl–L–phenylalanine

ZAAL:

N–benzyloxycarbonyl–L–alanyl–L–alanyl–L–leucine

References

  1. Perez–Silva, J. G., Espanol, Y., Velasco, G., and Quesada, V. (2016) The Degradome database: expanding roles of mammalian proteases in life and disease, Nucleic Acids Res., 44, D351–D355.

    Article  CAS  PubMed  Google Scholar 

  2. Turk, B., Turk, D., and Turk, V. (2012) Protease signalling: the cutting edge, EMBO J., 31, 1630–1643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Turk, B. (2006) Targeting proteases: successes, failures and future prospects, Nat. Rev. Drug Discov., 5, 785–799.

    Article  CAS  PubMed  Google Scholar 

  4. Tanco, S., Tort, O., Demol, H., Aviles, F. X., Gevaert, K., Van Damme, P., and Lorenzo, J. (2015) C–terminomics screen for natural substrates of cytosolic carboxypeptidase 1 reveals processing of acidic protein Ctermini, Mol. Cell. Proteomics, 14, 177–190.

    Article  CAS  PubMed  Google Scholar 

  5. Sapio, M. R., and Fricker, L. D. (2014) Carboxypeptidases in disease: insights from peptidomic studies, Proteomics Clin. Appl., 8, 327–337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Osterman, A. L., Stepanov, V. M., Rudenskaya, G. N., Khodova, O. M., and Tsaplina, I. A. (1984) Carboxypeptidase T–extracellular carboxypeptodase of Thermoactinomyces–a distant analogue of animal car–boxypeptidases, Biokhimiya, 49, 292–301.

    CAS  Google Scholar 

  7. Teplyakov, A., Polyakov, K., Obmolova, G., Strokopytov, B., Kuranova, I., Osterman, A. L., Grishin, N., Smulevitch, S., Zagnitko, O., and Galperina, O. (1992) Crystal structure of carboxypeptidase T from Thermoactinomyces vulgaris, Eur. J. Biochem., 208, 281–288.

    Article  CAS  PubMed  Google Scholar 

  8. Schechter, I., and Berger, A. (1967) On the size of the active site in proteases. I. Papain, Biochem. Biophys. Res. Commun., 27, 157–162.

    Article  CAS  PubMed  Google Scholar 

  9. Auld, D. S., Galdes, A., Geoghegan, K. F., Holmquist, B., Martinelli, R., and Vallee, B. L. (1984) Cryospectrokinetic characterization of intermediates in biochemical reactions: carboxypeptidase A, Proc. Natl. Acad. Sci. USA, 81, 5041–5045.

    Article  CAS  PubMed  Google Scholar 

  10. Reeke, G. N., Hartsuck, J. A., Ludwig, M. L., Quiocho, F. A., Steitz, T. A., and Lipscomb, W. N. (1967) The structure of carboxypeptidase A. VI. Some results at 2.0–Å resolution, and the complex with glycyl–tyrosine at 2.8–Å resolution, Proc. Natl. Acad. Sci. USA, 58, 2220–2226.

    Article  CAS  PubMed  Google Scholar 

  11. Gardell, S. J., Craik, C. S., Clauser, E., Goldsmith, E. J., Stewart, C. B., Graf, M., and Rutter, W. J. (1988) A novel rat carboxypeptidase, CPA2: characterization, molecular cloning, and evolutionary implications on substrate specificity in the carboxypeptidase gene family, J. Biol. Chem., 263, 17828–17836.

    CAS  PubMed  Google Scholar 

  12. Stepanov, V. M. (1995) Carboxypeptidase T, Methods Enzymol., 248, 675–683.

    Article  CAS  PubMed  Google Scholar 

  13. Osterman, A. L., Grishin, N. V., Smulevitch, S. V., Matz, M. V., Zagnitko, O. P., Revina, L. P., and Stepanov, V. M. (1992) Primary structure of carboxypeptidase T: delineation of functionally relevant features in Zn–carboxypeptidase family, J. Protein Chem., 11, 561–570.

    Article  CAS  PubMed  Google Scholar 

  14. Reeck, G. R., Walsh, K. A., Hermodson, M. A., and Neurath, H. (1971) New forms of bovine carboxypeptidase B and their homologous relationships to carboxypeptidase A, Proc. Natl. Acad. Sci. USA, 68, 1226–1230.

    Article  CAS  PubMed  Google Scholar 

  15. Bunnage, M. E., Blagg, J., Steele, J., Owen, D. R., Allerton, C., McElroy, A. B., Miller, D., Ringer, T., Butcher, K., Beaumont, K., Evans, K., Gray, A. J., Holland, S. J., Feeder, N., Moore, R. S., and Brown, D. G. (2007) Discovery of potent and selective inhibitors of activated thrombin–activatable fibrinolysis inhibitor for the treatment of thrombosis, J. Med. Chem., 50, 6095–6103.

    Article  CAS  PubMed  Google Scholar 

  16. Bown, D. P., and Gatehouse, J. A. (2004) Characterization of a digestive carboxypeptidase from the insect pest corn earworm (Helicoverpa armigera) with novel specificity towards C–terminal glutamate residues, Eur. J. Biochem., 271, 2000–2011.

    Article  CAS  PubMed  Google Scholar 

  17. Edge, M., Forder, C., Hennam, J., Lee, I., Tonge, D., Hardern, I., Fitton, J., Eckersley, K., East, S., Shufflebotham, A., Blakey, D., and Slater, A. (1998) Engineered human carboxypeptidase B enzymes that hydrolyse hippuryl–L–glutamic acid: reversed–polarity mutants, Protein Eng., 11, 1229–1234.

    Article  CAS  PubMed  Google Scholar 

  18. Grishin, A. M., Akparov, V. Kh., and Chestykhina, G. G. (2008) Leu254 residue and calcium ions as new structural determinant of carboxypeptidase T substrate specificity, Biochemistry (Moscow), 73, 1140–1145.

    Article  CAS  Google Scholar 

  19. Akparov, V. Kh., Grishin, A. M., Yusupova, M. P., Ivanova, N. M., and Chestukhina, G. G. (2007) Structural principles of the wide substrate specificity of Thermoactinomyces vulgaris carboxypeptidase T. Reconstruction of the car–boxypeptidase B primary specificity pocket, Biochemistry (Moscow), 72, 416–423.

    Article  CAS  Google Scholar 

  20. Akparov, V. Kh., Belyanova, L. P., Baratova, L. A., and Stepanov, V. M. (1979) Subtilisin 72–a serine protease from Bac. subtilus strain 72–an enzyme similar to subtilisin Carlsberg, Biokhmiya, 44, 886–891.

    CAS  Google Scholar 

  21. Lyublinskaya, L. A., Yakusheva, L. D., and Stepanov, V. M. (1977) Synthesis of peptide substrates of subtilisin and its analogues, Bioorg. Khim., 3, 273–279.

    CAS  Google Scholar 

  22. Cueni, L. B., Bazzone, T. J., Riordan, J. F., and Vallee, B. L. (1980) Affinity chromatographic sorting of carboxypeptidase A and its chemically modified derivatives, Anal. Biochem., 107, 341–349.

    Article  CAS  PubMed  Google Scholar 

  23. Novagen pET System Manual TB055 (1997) 7th Edn., Novagen Madison, W.I.

  24. Trachuk, L., Letarov, A., Kudelina, I. A., Yusupova, M. P., and Chestukhina, G. G. (2005) In vitro refolding of car–boxypeptidase T precursor from Thermoactinomyces vulgaris obtained in Escherichia coli as cytoplasmic inclusion bodies, Protein Expr. Purif., 40, 51–59.

    Article  CAS  PubMed  Google Scholar 

  25. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding, Anal. Biochem., 72, 248–254.

    Article  CAS  Google Scholar 

  26. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227, 680–685.

    Article  CAS  PubMed  Google Scholar 

  27. Cornish–Bowden, A. (2013) Fundamentals of Enzyme Kinetics, 4th Edn., Wiley–VCH, Weinheim.

    Google Scholar 

  28. Krissinel, E., and Henrick, K. (2007) Inference of macro-molecular assemblies from crystalline state, J. Mol. Biol., 372, 774–797.

    Article  CAS  PubMed  Google Scholar 

  29. Takahashi, S., Tsurumura, T., Aritake, K., Furubayashi, N., Sato, M., Yamanaka, M., Hirota, E., Sano, S., Kobayashi, T., Tanaka, T., Inaka, K., Tanaka, H., and Urade, Y. (2010) High–quality crystals of human haematopoietic prostaglandin D synthase with novel inhibitors, Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 66, 846–850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kuranova, I. P., Smirnova, E. A., Abramchik, Yu. A., Chupova, L. A., Esipov, R. S., Akparov, V. Kh., Timofeev, V. I., and Kovalchuk, M. V. (2011) Crystal growth of phosphopantentein adenylyltransferase, carboxypeptidase T, and thymidine phosphorylase on the international space station by the capillary counter–diffusion method, Crystallogr. Rep., 56, 884–891.

    Article  CAS  Google Scholar 

  31. McCoy, A. J., Grosse–Kunstleve, R. W., Adams, P. D., Winn, M. D., Storoni, L. C., and Read, R. J. (2007) Phaser crystallographic software, J. Appl. Crystallogr., 40, 658–674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Murshudov, G. N., Vagin, A. A., and Dodson, E. J. (1997) Refinement of macromolecular structures by the maximum–likelihood method, Acta Crystallogr. Sect. D Biol. Crystallogr., 53, 240–255.

    Article  CAS  Google Scholar 

  33. Emsley, P., and Cowtan, K. (2004) Coot: model–building tools for molecular graphics, Acta Crystallogr. Sect. D Biol. Crystallogr., 60, 2126–2132.

    Article  CAS  Google Scholar 

  34. Park, J. D., Kim, D. H., Kim, S. J., Woo, J. R., and Ryu, S. E. (2002) Sulfamide–based inhibitors for carboxypeptidase A. Novel type transition state analogue inhibitors for zinc proteases, J. Med. Chem., 45, 5295–5302.

    Article  CAS  PubMed  Google Scholar 

  35. Akparov, V. K., Sokolenko, N., Timofeev, V., and Kuranova, I. (2015) Structure of the complex of carboxypeptidase B and N–sulfamoyl–L–arginine, Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 71, 1335–1340.

    Article  CAS  Google Scholar 

  36. Akparov, V. Kh., Timofeev, V. I., Maghsoudi, N. N., and Kuranova, I. P. (2017) Three–dimensional structure of porcine pancreatic carboxypeptidase B with an acetate ion and two zinc atoms in the active center, Crystallogr. Rep., 62, 249–253.

    Article  CAS  Google Scholar 

  37. Akparov, V., Timofeev, V., Khaliullin, I., Švedas, V., and Kuranova, I. (2018) Structure of the carboxypeptidase B complex with N–sulfamoyl–L–phenylalanine–a transition state analog of non–specific substrate, J. Biomol. Struct. Dyn., 36, 956–965.

    Article  CAS  PubMed  Google Scholar 

  38. Akparov, V., Timofeev, V., Khaliullin, I., Švedas, V., Kuranova, I., and Rakitina, T. (2017) Crystal structures of carboxypeptidase T complexes with transition–state analogs, J. Biomol. Struct. Dyn., 35, 1–9.

    Article  CAS  Google Scholar 

  39. Aloy, P., Companys, V., Vendrell, J., Aviles, F. X., Fricker, L. D., Coll, M., and Gomis–Ruth, F. X. (2001) The crystal structure of the inhibitor–complexed carboxypeptidase D domain II and the modeling of regulatory carboxypeptidases, J. Biol. Chem., 276, 16177–16184.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Kh. Akparov.

Additional information

Originally published in Biochemistry (Moscow) On–Line Papers in Press, as Manuscript BM18–165, November 12, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akparov, V.K., Timofeev, V.I., Khaliullin, I.G. et al. Mobile Loop in the Active Site of Metallocarboxypeptidases as an Underestimated Determinant of Substrate Specificity. Biochemistry Moscow 83, 1594–1602 (2018). https://doi.org/10.1134/S0006297918120167

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297918120167

Keywords

Navigation