Skip to main content
Log in

Iatrogenic Damage of Eye Tissues: Current Problems and Possible Solutions

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Visual system is at high risk of iatrogenic damage. Laser ocular surgery, the use of powerful illumination devices in diagnostics and surgical treatment of eye diseases, as well as long surgeries under general anesthesia provoke the development of chronic degenerative changes in eye tissues, primarily in the cornea and the retina. Despite the existence of approaches for prevention and treatment of these complications, the efficacy of these approaches is often limited. Here, we review the mechanisms of iatrogenic damage to eye tissues at the cellular and biochemical levels. It is well recognized that oxidative stress is one of the main factors hindering regeneration of eye tissues after injuries and, thereby, aggravating iatrogenic eye disorders. It is accompanied by the downregulation of low–molecular–weight antioxidants and antioxidant enzymes, as well as changes in the expression and redox status of proteins in the damaged tissue. In this regard, antioxidant therapy, in particular, the use of highly effective mitochondria–targeted antioxidants such as SkQ1, is considered as a promising approach to the prevention of iatrogenesis. Recent findings indicate that the most efficient protection of eye tissues from the iatrogenic injury is achieved by preventive use of these antioxidants. In addition to preventing corneal and retinal cell death induced by oxidative stress, SkQ1 contributes to the restoration of innate antioxidant defense of these tissues and suppresses local inflammatory response. Since the timing of routine medical manipulations is usually known in advance, iatrogenic damage to the ocular tissues can be successfully prevented using mitochondria–targeted therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PCRD:

photochemical retinal damage

PDES:

perioperative dry eye syndrome

ROS:

reactive oxygen species

RPE:

retinal pigment epithelium

References

  1. Gomes, J. A. P., Azar, D. T., Baudouin, C., Efron, N., Hirayama, M., Horwath–Winter, J., Kim, T., Mehta, J. S., Messmer, E. M., Pepose, J. S., Sangwan, V. S., Weiner, A. L., Wilson, S. E., and Wolffsohn, J. S. (2017) TFOS DEWS II iatrogenic report, Ocul. Surf., 15, 511–538.

    Article  PubMed  Google Scholar 

  2. Malafa, M. M., Coleman, J. E., Bowman, R. W., and Rohrich, R. J. (2016) Perioperative corneal abrasion: updated guidelines for prevention and management, Plast. Reconstr. Surg., 137, 790e–798e.

    Article  CAS  PubMed  Google Scholar 

  3. Wolffe, M. (2016) How safe is the light during ophthalmic diagnosis and surgery, Eye (Lond.), 30, 186–188.

    Article  CAS  Google Scholar 

  4. Iomdina, E. N., Tarutta, E. P., Ignat’eva, N. Yu., Kostanyan, I. A., Minkevich, N. I., Shehter, A. B., Danilov, N. A., Kvaatsheliya, N. G., and Cherhisheva, S. G. (2008) Current achievements in basic studies of the pathogenesis of progressing myopia, Ross. Oftalmol. Zh., 1, 7–12.

    Google Scholar 

  5. Batra, Y. K., and Bali, I. M. (1977) Corneal abrasions during general anesthesia, Anesth. Analg., 56, 363–365.

    Article  CAS  PubMed  Google Scholar 

  6. Glickman, R. D. (2002) Phototoxicity to the retina: mechanisms of damage, Int. J. Toxicol., 21, 473–490.

    Article  CAS  PubMed  Google Scholar 

  7. Zernii, E. Y., Baksheeva, V. E., Iomdina, E. N., Averina, O. A., Permyakov, S. E., Philippov, P. P., Zamyatnin, A. A., and Senin, I. I. (2016) Rabbit models of ocular diseases: new relevance for classical approaches, CNS Neurol. Disord. Drug Targets, 15, 267–291.

    Article  CAS  PubMed  Google Scholar 

  8. Buddi, R., Lin, B., Atilano, S. R., Zorapapel, N. C., Kenney, M. C., and Brown, D. J. (2002) Evidence of oxidative stress in human corneal diseases, J. Histochem. Cytochem., 50, 341–351.

    Article  CAS  PubMed  Google Scholar 

  9. Moreno, M. C., Campanelli, J., Sande, P., Saenz, D. A., Sarmiento, M. I. K., and Rosenstein, R. E. (2004) Retinal oxidative stress induced by high intraocular pressure, Free Radic. Biol. Med., 37, 803–812.

    Article  CAS  PubMed  Google Scholar 

  10. Gandhi, S., and Jain, S. (2014) The Anatomy and Physiology of Cornea, Keratoprostheses and Artificial Corneas: Fundamentals and Surgical Applications, Springer, Berlin–Heidelberg, pp. 19–25.

    Google Scholar 

  11. Kolozsvari, L., Nogradi, A., Hopp, B., and Bor, Z. (2002) UV absorbance of the human cornea in the 240–to 400–nm range, Invest. Ophthalmol. Vis. Sci., 43, 2165–2168.

    PubMed  Google Scholar 

  12. Chen, Y., Mehta, G., and Vasiliou, V. (2009) Antioxidant defenses in the ocular surface, Ocul. Surf., 7, 176–185.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Fini, M. (1999) Keratocyte and fibroblast phenotypes in the repairing cornea, Prog. Retin. Eye Res., 18, 529–551.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, W., Li, H., Ogando, D. G., Li, S., Feng, M., Price, F. W., Jr., Tennessen, J. M., and Bonanno, J. A. (2017) Glutaminolysis is essential for energy production and ion transport in human corneal endothelium, EBioMedicine, 16, 292–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kim, K. M., Shin, Y.–T., and Kim, H. K. (2012) Effect of autologous platelet–rich plasma on persistent corneal epithelial defect after infectious keratitis, Jpn. J. Ophthalmol., 56, 544–550.

    Article  CAS  PubMed  Google Scholar 

  16. Baudouin, C. (2001) The pathology of dry eye, Surv. Ophthalmol., 45, S211–S220.

    Article  PubMed  Google Scholar 

  17. Zernii, E. Yu., Golovastova, M. O., Baksheeva, V. E., Kabanova, E. I., Ishutina, I. E., Gancharova, O. S., Gusev, A. E., Savchenko, M. S., Loboda, A. P., Sotnikova, L. F., Zamyatnin, A. A., Jr., Philippov, P. P., and Senin, I. I. (2016) Alterations in tear biochemistry associated with chronic dry eye syndrome in postanesthetic period, Biochemistry (Moscow), 81, 1549–1557.

    Article  CAS  Google Scholar 

  18. Zernii, E. Yu., Baksheeva, V. E., Kabanova, E. I., Tulina, V. V., Golovastova, M. O., Gancharova, O. S., Savchenko, M. S., Sotikova, L. F., Zamyatnin, A. A., Jr., Filippov, P. P., and Senin, I. I. (2018) Effect of general anesthesia duration on recovery of secretion and biochemical properties of tear fluid in the post–anesthetic period, Bull. Exp. Biol. Med., 165, 269–271.

    Article  CAS  PubMed  Google Scholar 

  19. Yu, H.–D., Chou, A.–H., Yang, M.–W., and Chang, C.–J. (2010) An analysis of perioperative eye injuries after nonocular surgery, Acta Anaesthesiol. Taiwan, 48, 122–129.

    Article  PubMed  Google Scholar 

  20. Orlin, S. E., Kurata, F. K., Krupin, T., Schneider, M., and Glendrange, R. R. (1989) Ocular lubricants and corneal injury during anesthesia, Anesth. Analg., 69, 384–385.

    Article  CAS  PubMed  Google Scholar 

  21. Zeev, M. S.–B., Miller, D. D., and Latkany, R. (2014) Diagnosis of dry eye disease and emerging technologies, Clin. Ophthalmol., 8, 581–590.

    PubMed  PubMed Central  Google Scholar 

  22. Grover, V. K., Kumar, K. V. W., Sharma, S., Sethi, N., and Grewal, S. P. S. (1999) Comparison of methods of eye protection under general anesthesia, Survey Anesthesiol., 43, 75–76.

    Article  Google Scholar 

  23. Wolkoff, P., Nojgaard, J. K., Troiano, P., and Piccoli, B. (2005) Eye complaints in the office environment: precorneal tear film integrity influenced by eye blinking efficiency, Occup. Environ. Med., 62, 4–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mastropasqua, L., Ciancaglini, M., Di Tano, G., Carpineto, P., Lobefalo, L., Loffredo, B., Bosco, D., Columbaro, M., and Falcieri, E. (1998) Ultrastructural changes in rat cornea after prolonged hypobaric hypoxia, J. Submicrosc. Cytol. Pathol., 30, 285–293.

    CAS  PubMed  Google Scholar 

  25. Zernii, E. Yu., Gancharova, O. S., Ishytina, I. E., Baksheeva, V. E., Golovastova, M. O., Kabanova, E. I., Savchenko, M. S., Serebryakova, M. V., Sotikova, L. F., Zamyatnin, A. A., Jr., Filippov, P. P., and Senin, I. I. (2017) Mechanisms of perioperative corneal abrasions: alterations in the tear film proteome, Biochemistry (Moscow) Suppl. Ser. B: Biomed. Chem., 11, 186–193.

    Article  Google Scholar 

  26. Fullard, R. J., and Snyder, C. (1990) Protein levels in non–stimulated and stimulated tears of normal human subjects, Invest. Ophthalmol. Vis. Sci., 31, 1119–1126.

    CAS  PubMed  Google Scholar 

  27. Seitz, B., Rozsival, P., Feuermannova, A., Langenbucher, A., and Naumann, G. O. H. (2003) Penetrating keratoplasty for iatrogenic keratoconus after repeat myopic laser in situ keratomileusis: histologic findings and literature review, J. Cataract Refract. Surg., 29, 2217–2224.

    Article  PubMed  Google Scholar 

  28. Wang, L., Moss, H., Ventura, B. V., Padilha, H., Hester, C., and Koch, D. D. (2013) Advances in refractive surgery, Asia Pac. J. Ophthalmol. (Phila), 2, 317–327.

    Article  Google Scholar 

  29. Levitt, A. E., Galor, A., Weiss, J. S., Felix, E. R., Martin, E. R., Patin, D. J., Sarantopoulos, K. D., and Levitt, R. C. (2015) Chronic dry eye symptoms after lasik: parallels and lessons to be learned from other persistent post–operative pain disorders, Mol. Pain, 11,21.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Cejkova, J., Stipek, S., Crkovska, J., Ardan, T., Platenik, J., Cejka, C., and Midelfart, A. (2004) UV rays, the prooxidant/antioxidant imbalance in the cornea and oxidative eye damage, Physiol. Res., 53, 1–10.

    CAS  PubMed  Google Scholar 

  31. Leonardi, A., Tavolato, M., Curnow, S. J., Fregona, I. A., Violato, D., and Alio, J. L. (2009) Cytokine and chemokine levels in tears and in corneal fibroblast cultures before and after excimer laser treatment, J. Cataract Refract. Surg., 35, 240–247.

    Article  PubMed  Google Scholar 

  32. Kochevar, I. E. (1989) Cytotoxicity and mutagenicity of excimer laser radiation, Lasers Surg. Med., 9, 440–445.

    Article  CAS  PubMed  Google Scholar 

  33. Bilgihan, K., Bilgihan, A., Adiguzel, U., Sezer, C., Yis, O., Akyol, G., and Hasanreisoglu, B. (2002) Keratocyte apoptosis and corneal antioxidant enzyme activities after refractive corneal surgery, Eye, 16, 63–68.

    Article  CAS  PubMed  Google Scholar 

  34. Riley, M. V., Susan, S., Peters, M. I., and Schwartz, C. A. (1987) The effects of UV–B irradiation on the corneal endothelium, Curr. Eye Res., 6, 1021–1033.

    Article  CAS  PubMed  Google Scholar 

  35. Carubelli, R., Nordquist, R. E., and Rowsey, J. J. (1990) Role of active oxygen species in corneal ulceration. Effect of hydrogen peroxide generated in situ, Cornea, 9, 161–169.

    Article  CAS  PubMed  Google Scholar 

  36. Ng, S. K., Wood, J. P., Chidlow, G., Han, G., Kittipassorn, T., Peet, D. J., and Casson, R. J. (2015) Cancer–like metabolism of the mammalian retina, Clin. Exp. Ophthalmol., 43, 367–376.

    Article  PubMed  Google Scholar 

  37. Fletcher, A. E. (2008) Sunlight exposure, antioxidants, and age–related macular degeneration, Arch. Ophthalmol., 126, 1396–1403.

    PubMed  Google Scholar 

  38. Winkler, B. S. (2008) An hypothesis to account for the renewal of outer segments in rod and cone photoreceptor cells: renewal as a surrogate antioxidant, Invest. Ophthalmol. Vis. Sci., 49, 3259–3261.

    Article  PubMed  Google Scholar 

  39. Wu, J., Seregard, S., and Algvere, P. V. (2006) Photochemical damage of the retina, Surv. Ophthalmol., 51, 461–481.

    Article  PubMed  Google Scholar 

  40. Van den Biesen, P. R., Berenschot, T., Verdaasdonk, R. M., van Weelden, H., and van Norren, D. (2000) Endoillumination during vitrectomy and phototoxicity thresholds, Br. J. Ophthalmol., 84, 1372–1375.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kuhn, F., Morris, R., and Massey, M. (1991) Photic retinal injury from endoillumination during vitrectomy, Am. J. Ophthalmol., 111, 42–46.

    Article  CAS  PubMed  Google Scholar 

  42. McDonald, H. R., and Irvine, A. R. (1983) Light–induced maculopathy from the operating microscope in extracapsular cataract extraction and intraocular lens implantation, Ophthalmology, 90, 945–951.

    Article  CAS  PubMed  Google Scholar 

  43. Michels, M., and Sternberg, P., Jr. (1990) Operating micro–scope–induced retinal phototoxicity: pathophysiology, clinical manifestations and prevention, Surv. Ophthalmol., 34, 237–252.

    Article  CAS  Google Scholar 

  44. Postel, E. A., Pulido, J. S., Byrnes, G. A., Heier, J., Waterhouse, W., Han, D. P., Mieler, W. F., Guse, C., and Wipplinger, W. (1998) Long–term follow–up of iatrogenic phototoxicity, Arch. Ophthalmol., 116, 753–757.

    Article  CAS  PubMed  Google Scholar 

  45. Tso, M. O., Fine, B. S., and Zimmerman, L. E. (1972) Photic maculopathy produced by the indirect ophthalmo–scope. 1. Clinical and histopathologic study, Am. J. Ophthalmol., 73, 686–699.

    Article  CAS  Google Scholar 

  46. Tso, M. O., and Woodford, B. J. (1983) Effect of photic injury on the retinal tissues, Ophthalmology, 90, 952–963.

    Article  CAS  PubMed  Google Scholar 

  47. Delori, F. C., Webb, R. H., and Sliney, D. H. (2007) Maximum permissible exposures for ocular safety (ansi 2000), with emphasis on ophthalmic devices, J. Opt. Soc. Am., 24, 1250–1265.

    Google Scholar 

  48. Glickman, R. D., Jacques, S. L., Schwartz, J. A., Rodriguez, T., Lam, K.–W., and Buhr, G. (1996) Photodisruption increases the free–radical reactivity of melanosomes isolated from retinal pigment epithelium, in Laser–Tissue Interaction VII, Proc. SPIE (Jacques, S. I., ed.), Vol. 2681, SPIE, Bellingham (WA), pp. 460–467.

    Article  CAS  Google Scholar 

  49. Van Norren, D., and Vos, J. J. (2016) Light damage to the retina: an historical approach, Eye, 30, 169–172.

    Article  CAS  PubMed  Google Scholar 

  50. Grignolo, A., Orzalesi, N., Castellazzo, R., and Vittone, P. (1969) Retinal damage by visible light in albino rats, Ophthalmologica, 157, 43–59.

    Article  CAS  PubMed  Google Scholar 

  51. Bush, R. A., Reme, C. E., and Malnoe, A. (1991) Light damage in the rat retina: the effect of dietary deprivation of n–3 fatty acids on acute structural alterations, Exp. Eye Res., 53, 741–752.

    Article  CAS  PubMed  Google Scholar 

  52. Pautler, E. L., Morita, M., and Beezley, D. (1990) Hemoprotein(s) mediate blue light damage in the retinal pigment epithelium, Photochem. Photobiol., 51, 599–605.

    Article  CAS  PubMed  Google Scholar 

  53. Demontis, G. C., Longoni, B., and Marchiafava, P. L. (2002) Molecular steps involved in light–induced oxidative damage to retinal rods, Invest. Ophthalmol. Vis. Sci., 43, 2421–2427.

    PubMed  Google Scholar 

  54. Van Norren, D., and Theo, G. M. (2011) The action spectrum of photochemical damage to the retina: a review of monochromatic threshold data, Photochem. Photobiol., 87, 747–753.

    Article  CAS  PubMed  Google Scholar 

  55. Ham, W. T., Jr., Mueller, H. A., and Sliney, D. H. (1976) Retinal sensitivity to damage from short wavelength light, Nature, 260, 153–155.

    Article  PubMed  Google Scholar 

  56. Kremers, J. J., and van Norren, D. (1989) Retinal damage in macaque after white light exposures lasting ten minutes to twelve hours, Invest. Ophthalmol. Vis. Sci., 30, 1032–1040.

    CAS  PubMed  Google Scholar 

  57. Sykes, S. M., Robison, W. G., Jr., Waxler, M., and Kuwabara, T. (1981) Damage to the monkey retina by broad–spectrum fluorescent light, Invest. Ophthalmol. Vis. Sci., 20, 425–434.

    CAS  PubMed  Google Scholar 

  58. Ben–Shabat, S., Parish, C. A., Vollmer, H. R., Itagaki, Y., Fishkin, N., Nakanishi, K., and Sparrow, J. R. (2001) Biosynthetic studies of a2e, a major fluorophore of retinal pigment epithelial lipofuscin, J. Biol. Chem., 277, 7183–7190.

    Google Scholar 

  59. Organisciak, D. T., Wang, H. M., and Kou A. L. (1984) Ascorbate and glutathione levels in the developing normal and dystrophic rat retina: effect of intense light exposure, Curr. Eye Res., 3, 257–267.

    Article  CAS  PubMed  Google Scholar 

  60. Hunter, J. J., Morgan, J. I. W., Merigan, W. H., Sliney, D. H., Sparrow, J. R., and Williams, D. R. (2012) The susceptibility of the retina to photochemical damage from visible light, Prog. Retin. Eye Res., 31, 28–42.

    Article  PubMed  Google Scholar 

  61. Pawlak, A., Rozanowska, M., Zareba, M., Lamb, L. E., Simon, J. D., and Sarna, T. (2002) Action spectra for the photoconsumption of oxygen by human ocular lipofuscin and lipofuscin extracts, Arch. Biochem. Biophys., 403, 59–62.

    Article  CAS  PubMed  Google Scholar 

  62. Wolf, G. (2003) Lipofuscin and macular degeneration, Nutr. Rev., 61, 342–346.

    Article  PubMed  Google Scholar 

  63. Chen, Y., Sawada, O., Kohno, H., Le, Y.–Z., Subauste, C., Maeda, T., and Maeda, A. (2013) Autophagy protects the retina from light–induced degeneration, J. Biol. Chem., 288, 7506–7518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Thumann, G., Bartz–Schmidt, K. U., Kociok, N., Kayatz, P., Heimann, K., and Schraermeyer, U. (1999) Retinal damage by light in the golden hamster: an ultrastructural study in the retinal pigment epithelium and bruch’s membrane, J. Photochem. Photobiol. B, 49, 104–111.

    Article  CAS  PubMed  Google Scholar 

  65. Hao, W., Wenzel, A., Obin, M. S., Chen, C. K., Brill, E., Krasnoperova, N. V., Eversole–Cire, P., Kleyner, Y., Taylor, A., Simon, M. I., Grimm, C., Reme, C. E., and Lem, J. (2002) Evidence for two apoptotic pathways in light–induced retinal degeneration, Nat. Genet., 32, 254–260.

    Article  CAS  PubMed  Google Scholar 

  66. Organisciak, D. T., and Vaughan, D. K. (2010) Retinal light damage: mechanisms and protection, Prog. Retin. Eye Res., 29, 113–134.

    Article  PubMed  Google Scholar 

  67. Wenzel, A., Grimm, C., Samardzija, M., and Reme, C. E. (2005) Molecular mechanisms of light–induced photore–ceptor apoptosis and neuroprotection for retinal degeneration, Prog. Retin. Eye Res., 24, 275–306.

    Article  CAS  PubMed  Google Scholar 

  68. Lieven, C. J., Ribich, J. D., Crowe, M. E., and Levin, L. A. (2012) Redox proteomic identification of visual arrestin dimerization in photoreceptor degeneration after photic injury, Invest. Ophthalmol. Vis. Sci., 53, 3990–3998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zernii, E. Y., Nazipova, A. A., Gancharova, O. S., Kazakov, A. S., Serebryakova, M. V., Zinchenko, D. V., Tikhomirova, N. K., Senin, I. I., Philippov, P. P., Permyakov, E. A., and Permyakov, S. E. (2015) Light–induced disulfide dimerization of recoverin under ex vivo and in vivo conditions, Free Radic. Biol. Med., 83, 283–295.

    Article  CAS  PubMed  Google Scholar 

  70. Grixti, A., Sadri, M., and Watts, M. T. (2013) Corneal protection during general anesthesia for nonocular surgery, Ocul. Surf., 11, 109–118.

    Article  PubMed  Google Scholar 

  71. Hrazdirova, V., Navratilova, B., and Ventrubova, R. (1990) Use of contact lenses during general anesthesia, Cesk. Oftalmol., 46, 223–229.

    CAS  PubMed  Google Scholar 

  72. Boggild–Madsen, N. B., Bundgarrd–Nielsen, P., Hammer, U., and Jakobsen, B. (1981) Comparison of eye protection with methylcellulose and paraffin ointments during general anaesthesia, Can. Anaesth. Soc. J., 28, 575–578.

    Article  PubMed  Google Scholar 

  73. White, E., and Crosse, M. M. (1998) The aetiology and prevention of peri–operative corneal abrasions, Anaesthesia, 53, 157–161.

    Article  CAS  PubMed  Google Scholar 

  74. Cross, D. A., and Krupin, T. (1977) Implications of the effects of general anesthesia on basal tear production, Anesth. Analg., 56, 35–37.

    Article  CAS  PubMed  Google Scholar 

  75. Cuddihy, P. J., and Whittet, H. (2005) Eye observation and corneal protection during endonasal surgery, J. Laryngol. Otol., 119, 556–557.

    Article  CAS  PubMed  Google Scholar 

  76. Ganidagli, S., Cengi, M., Becerik, C., Oguz, H., and Kilic, A. (2004) Eye protection during general anaesthesia: comparison of four different methods, Eur. J. Anaesthesiol., 21, 665–667.

    Article  CAS  PubMed  Google Scholar 

  77. Manecke, G. R., Jr., Tannenbaum, D. P., and McCoy, B. E. (2000) Severe bilateral corneal injury attributed to a preservative–containing eye lubricant, Anesthesiology, 93, 1545–1546.

    Article  PubMed  Google Scholar 

  78. Zernii, E. Y., Baksheeva, V. E., Yani, E. V., Philippov, P. P., and Senin, I. I. (2017) Therapeutic proteins for treatment of corneal epithelial defects, Curr. Med. Chem., doi: 10.2174/0929867324666170609080920.

    Google Scholar 

  79. Brzheskiy, V. V., Efimova, E. L., Vorontsova, T. N., Alekseev, V. N., Gusarevich, O. G., Shaidurova, K. N., Ryabtseva, A. A., Andryukhina, O. M., Kamenskikh, T. G., Sumarokova, E. S., Miljudin, E. S., Egorov, E. A., Lebedev, O. I., Surov, A. V., Korol, A. R., Nasinnyk, I. O., Bezditko, P. A., Muzhychuk, O. P., Vygodin, V. A., Yani, E. V., Savchenko, A. Y., Karger, E. M., Fedorkin, O. N., Mironov, A. N., Ostapenko, V., Popeko, N. A., Skulachev, V. P., and Skulachev, M. V. (2015) Results of a multicenter, randomized, double–masked, placebo–controlled clinical study of the efficacy and safety of Visomitin eye drops in patients with dry eye syndrome, Adv. Ther., 32, 1263–1279.

    CAS  PubMed  Google Scholar 

  80. Blades, K. J., Patel, S., and Aidoo, K. E. (2001) Oral antioxidant therapy for marginal dry eye, Eur. J. Clin. Nutr., 55, 589–597.

    Article  CAS  PubMed  Google Scholar 

  81. Xie, W. (2016) Recent advances in laser in situ keratomileusis–associated dry eye, Clin. Exp. Optom., 99, 107–112.

    Article  PubMed  Google Scholar 

  82. Kornilovskiy, I. M., Sultanova, A. I., and Burtsev, A. A. (2016) Riboflavin photoprotection with cross–linking effect in photorefractive ablation of the cornea, Vestnik Oftalmol., 132, 37–41.

    Article  CAS  Google Scholar 

  83. McKay, T. B., and Karamichos, D. (2017) Quercetin and the ocular surface: what we know and where we are going, Exp. Biol. Med. (Maywood), 242, 565–572.

    Article  CAS  Google Scholar 

  84. Ciuffi, M., Pisanello, M., Pagliai, G., Raimondi, L., Franchi–Micheli, S., Cantore, M., Mazzetti, L., and Failli, P. (2003) Antioxidant protection in cultured corneal cells and whole corneas submitted to UV–B exposure, J. Photochem. Photobiol. B, 71, 59–68.

    Article  CAS  PubMed  Google Scholar 

  85. Hammond, B. R., Johnson, B. A., and George, E. R. (2014) Oxidative photodegradation of ocular tissues: beneficial effects of filtering and exogenous antioxidants, Exp. Eye Res., 129, 135–150.

    Article  CAS  PubMed  Google Scholar 

  86. Gueven, N., Nadikudi, M., Daniel, A., and Chhetri, J. (2017) Targeting mitochondrial function to treat optic neuropathy, Mitochondrion, 36, 7–14.

    Article  CAS  PubMed  Google Scholar 

  87. Zueva, M. V., and Ivanina, T. A. (1980) Damaging effect of visual light on the retina in experiment (electrophysiological and electron microscopy studies), Vestnik Oftalmol., 4, 48–51.

    Google Scholar 

  88. Bhagavan, H. N., and Chopra, R. K. (2007) Plasma coenzyme q10 response to oral ingestion of coenzyme Q10 formulations, Mitochondrion, 7 (Suppl.), S78–88.

    Article  CAS  PubMed  Google Scholar 

  89. Manach, C., Williamson, G., Morand, C., Scalbert, A., and Remesy, C. (2005) Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies, Am. J. Clin. Nutr., 81, 230S–242S.

    Article  CAS  PubMed  Google Scholar 

  90. Gueven, N., Woolley, K., and Smith, J. (2015) Border between natural product and drug: comparison of the related benzoquinones idebenone and coenzyme Q10, Redox Biol., 4, 289–295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Blagosklonny, M. V., Campisi, J., Sinclair, D. A., Bartke, A., Blasco, M. A., Bonner, W. M., Bohr, V. A., Brosh, R. M., Jr., Brunet, A., Depinho, R. A., Donehower, L. A., Finch, C. E., Finkel, T., Gorospe, M., Gudkov, A. V., Hall, M. N., Hekimi, S., Helfand, S. L., Karlseder, J., Kenyon, C., Kroemer, G., Longo, V., Nussenzweig, A., Osiewacz, H. D., Peeper, D. S., Rando, T. A., Rudolph, K. L., Sassone–Corsi, P., Serrano, M., Sharpless, N. E., Skulachev, V. P., Tilly, J. L., Tower, J., Verdin, E., and Vijg, J. (2010) Impact papers on aging in 2009, Aging (Albany NY), 2, 111–121.

    Article  CAS  PubMed Central  Google Scholar 

  92. Skulachev, V. P., Anisimov, V. N., Antonenko, Y. N., Bakeeva, L. E., Chernyak, B. V., Erichev, V. P., Filenko, O. F., Kalinina, N. I., Kapelko, V. I., Kolosova, N. G., Kopnin, B. P., Korshunova, G. A., Lichinitser, M. R., Obukhova, L. A., Pasyukova, E. G., Pisarenko, O. I., Roginsky, V. A., Ruuge, E. K., Senin, I. I., Severina, I. I., Skulachev, M. V., Spivak, I. M., Tashlitsky, V. N., Tkachuk, V. A., Vyssokikh, M. Y., Yaguzhinsky, L. S., and Zorov, D. B. (2009) An attempt to prevent senescence: a mitochondrial approach, Biochim. Biophys. Acta, 1787, 437–461.

    Article  CAS  PubMed  Google Scholar 

  93. Zernii, E. Y., Gancharova, O. S., Baksheeva, V. E., Golovastova, M. O., Kabanova, E. I., Savchenko, M. S., Tiulina, V. V., Sotnikova, L. F., Zamyatnin, A. A., Jr., Philippov, P. P., and Senin, I. I. (2017) Mitochondria–targeted antioxidant SkQ1 prevents anesthesia–induced dry eye syndrome, Oxid. Med. Cell. Longev., 2017, 9281519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Vallabh, N. A., Romano, V., and Willoughby, C. E. (2017) Mitochondrial dysfunction and oxidative stress in corneal disease, Mitochondrion, 36, 103–113.

    Article  CAS  PubMed  Google Scholar 

  95. Linton, J. D., Holzhausen, L. C., Babai, N., Song, H., Miyagishima, K. J., Stearns, G. W., Lindsay, K., Wei, J., Chertov, A. O., Peters, T. A., Caffe, R., Pluk, H., Seeliger, M. W., Tanimoto, N., Fong, K., Bolton, L., Kuok, D. L., Sweet, I. R., Bartoletti, T. M., Radu, R. A., Travis, G. H., Zagotta, W. N., Townes–Anderson, E., Parker, E., Van der Zee, C. E., Sampath, A. P., Sokolov, M., Thoreson, W. B., and Hurley, J. B. (2010) Flow of energy in the outer retina in darkness and in light, Proc. Natl. Acad. Sci. USA, 107, 8599–8604.

    Article  PubMed  Google Scholar 

  96. Sacca, S. C., Roszkowska, A. M., and Izzotti, A. (2013) Environmental light and endogenous antioxidants as the main determinants of non–cancer ocular diseases, Mutat. Res., 752, 153–171.

    Article  CAS  PubMed  Google Scholar 

  97. Shimmura, S., Tadano, K., and Tsubota, K. (2004) UV dose–dependent caspase activation in a corneal epithelial cell line, Curr. Eye Res., 28, 85–92.

    Article  CAS  PubMed  Google Scholar 

  98. Sacca, S. C., Cutolo, C. A., Ferrari, D., Corazza, P., and Traverso, C. E. (2018) The eye, oxidative damage and polyunsaturated fatty acids, Nutrients, 10, E668.

    PubMed  Google Scholar 

  99. Specht, S., Organisciak, D. T., Darrow, R. M., and Leffak, M. (2000) Continuing damage to rat retinal DNA during darkness following light exposure, Photochem. Photobiol., 71, 559–566.

    Article  CAS  PubMed  Google Scholar 

  100. Roginsky, V., Barsukova, T., Loshadkin, D., and Pliss, E. (2003) Substituted p–hydroquinones as inhibitors of lipid peroxidation, Chem. Phys. Lipids, 125, 49–58.

    Article  CAS  PubMed  Google Scholar 

  101. Antonenko, Y. N., Avetisyan, A. V., Bakeeva, L. E., Chernyak, B. V., Chertkov, V. A., Domnina, L. V., Ivanova, O. Y., Izyumov, D. S., Khailova, L. S., Klishin, S. S., Korshunova, G. A., Lyamzaev, K. G., Muntyan, M. S., Nepryakhina, O. K., Pashkovskaya, A. A., Pletjushkina, O. Y., Pustovidko, A. V., Roginsky, V. A., Rokitskaya, T. I., Ruuge, E. K., Saprunova, V. B., Severina, I. I., Simonyan, R. A., Skulachev, I. V., Skulachev, M. V., Sumbatyan, N. V., Sviryaeva, I. V., Tashlitsky, V. N., Vassiliev, J. M., Vyssokikh, M. Y., Yaguzhinsky, L. S., Zamyatnin, A. A., Jr., and Skulachev, V. P. (2008) Mitochondria–targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 1. Cationic plastoquinone derivatives: synthesis and in vitro studies, Biochemistry (Moscow), 73, 1273–1278.

    Article  CAS  Google Scholar 

  102. Anisimov, V. N., Bakeeva, L. E., Egormin, P. A., Filenko, O. F., Isakova, E. F., Manskikh, V. N., Mikhelson, V. M., Panteleeva, A. A., Pasyukova, E. G., Pilipenko, D. I., Piskunova, T. S., Popovich, I. G., Roshchina, N. V., Rybina, O. Y., Saprunova, V. B., Samoylova, T. A., Semenchenko, A. V., Skulachev, M. V., Spivak, I. M., Tsybul’ko, E. A., Tyndyk, M. L., Vyssokikh, M. Y., Yurova, M. N., Zabezhinsky, M. A., and Skulachev, V. P. (2008) Mitochondria–targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 5. SkQ1 pro-longs lifespan and prevents development of traits of senescence, Biochemistry (Moscow), 73, 1329–1342.

    Article  CAS  Google Scholar 

  103. Neroev, V. V., Archipova, M. M., Bakeeva, L. E., Fursova, A. Zh., Grigorian, E. N., Grishanova, A. Y., Iomdina, E. N., Ivashchenko, Zh. N., Katargina, L. A., Khoroshilova–Maslova, I. P., Kilina, O. V., Kolosova, N. G., Kopenkin, E. P., Korshunov, S. S., Kovaleva, N. A., Novikova, Y. P., Philippov, P. P., Pilipenko, D. I., Robustova, O. V., Saprunova, V. B., Senin, I. I., Skulachev, M. V., Sotnikova, L. F., Stefanova, N. A., Tikhomirova, N. K., Tsapenko, I. V., Shchipanova, A. I., Zinovkin, R. A., and Skulachev, V. P. (2008) Mitochondria–targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 4. Age–related eye disease. SkQ1 returns vision to blind animals, Biochemistry (Moscow), 73, 1317–1328.

    Article  CAS  Google Scholar 

  104. Machemer, R., and Laqua, H. (1975) Pigment epithelium proliferation in retinal detachment (massive periretinal proliferation), Am. J. Ophthalmol., 80, 1–23.

    Article  CAS  PubMed  Google Scholar 

  105. Yang, Y., Karakhanova, S., Soltek, S., Werner, J., Philippov, P. P., and Bazhin, A. V. (2012) In vivo immunoregulatory properties of the novel mitochondria–targeted antioxidant SkQ1, Mol. Immunol., 52, 19–29.

    Article  CAS  PubMed  Google Scholar 

  106. Demianenko, I. A., Vasilieva, T. V., Domnina, L. V., Dugina, V. B., Egorov, M. V., Ivanova, O. Y., Ilinskaya, O. P., Pletjushkina, O. Y., Popova, E. N., Sakharov, I. Y., Fedorov, A. V., and Chernyak, B. V. (2010) Novel mito–chondria–targeted antioxidants, “Skulachev–ion” derivatives, accelerate dermal wound healing in animals, Biochemistry (Moscow), 75, 274–280.

    CAS  Google Scholar 

  107. Demyanenko, I. A., Zakharova, V. V., Ilyinskaya, O. P., Vasilieva, T. V., Fedorov, A. V., Manskikh, V. N., Zinovkin, R. A., Pletjushkina, O. Y., Chernyak, B. V., Skulachev, V. P., and Popova, E. N. (2017) Mitochondria–targeted antioxidant SkQ1 improves dermal wound healing in genetically diabetic mice, Oxid. Med. Cell. Longev., 2017, 6408278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Demyanenko, I. A., Popova, E. N., Zakharova, V. V., Ilyinskaya, O. P., Vasilieva, T. V., Romashchenko, V. P., Fedorov, A. V., Manskikh, V. N., Skulachev, M. V., Zinovkin, R. A., Pletjushkina, O. Y., Skulachev, V. P., and Chernyak, B. V. (2015) Mitochondria–targeted antioxidant SkQ1 improves impaired dermal wound healing in old mice, Aging (Albany NY), 7, 475–485.

    Article  CAS  Google Scholar 

  109. Voronkova, Ya. G., Popova, T. N., Agarkov, A. A., and Zinovkin, R. A. (2015) Effect of SkQ1 on activity of the glutathione system and NADPH–generating enzymes in an experimental model of hyperglycemia, Biochemistry (Moscow), 80, 1614–1621.

    Article  CAS  Google Scholar 

  110. Tiulina, V., Zernii, E., Baksheeva, V., Gancharova, O., Kabanova, E., Sotnikova, L., Zamyatnin, A., Philippov, P., and Senin, I. (2018) Mitochondria–targeted antioxidant SkQ1 improves corneal healing after UV–induced damage in rabbits, FEBS Open Bio, 8,215.

    Google Scholar 

  111. Novikova, Yu. P., Gancharova, O. S., Eichler, O. V., Philippov, P. P., and Grigoryan, E. N. (2014) Preventive and therapeutic effects of SkQ1–containing Visomitin eye drops against light–induced retinal degeneration, Biochemistry (Moscow), 79, 1101–1110.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Zernii.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baksheeva, V.E., Gancharova, O.S., Tiulina, V.V. et al. Iatrogenic Damage of Eye Tissues: Current Problems and Possible Solutions. Biochemistry Moscow 83, 1563–1574 (2018). https://doi.org/10.1134/S0006297918120143

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297918120143

Keywords

Navigation