Skip to main content
Log in

Ants as Object of Gerontological Research

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Social insects with identical genotype that form castes with radically different lifespans are a promising model system for studying the mechanisms underlying longevity. The main direction of progressive evolution of social insects, in particular, ants, is the development of the social way of life inextricably linked with the increase in the colony size. Only in a large colony, it is possible to have a developed polyethism, create large food reserves, and actively regulate the nest micro–climate. The lifespan of ants hugely varies among genetically similar queens, workers (unproductive females), and males. The main advantage of studies on insects is the determinism of ontogenetic processes, with a single genome leading to completely different lifespans in different castes. This high degree of determinacy is precisely the reason why some researchers (incorrectly) call a colony of ants the “superorganism”, emphasizing the fact that during the development, depending on the community needs, ants can switch their ontogenetic programs, which influences their social roles, ability to learn (i.e., the brain [mushroom–like body] plasticity), and, respectively, the spectrum of tasks performed by a given individual. It has been shown that in many types of food behavior, older ants surpass young ones in both performing the tasks and transferring the experience. The balance between the need to reduce the “cost” of non–breeding individuals (short lifespan and small size of workers) and the benefit from experienced long–lived workers possessing useful skills (large size and “non–aging”) apparently determines the differences in the lifespan and aging rate of workers in different species of ants. A large spectrum of rigidly determined ontogenetic trajectories in different castes with identical genomes and the possibility of comparison between “evolutionarily advanced” and “primitive” subfamilies (e.g., Formicinae and Ponerinae) make ants an attractive object in the studies of both normal aging and effects of anti–aging drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Comfort, A. (1979) The Biology of Senescence, Churchill Livingstone, Edinburgh–London.

    Google Scholar 

  2. Finch, C. E. (1990) Longevity, Senescence and the Genome, University Chicago Press, Chicago.

    Google Scholar 

  3. Medawar, P. B. (1952) An Unsolved Problem of Biology, H. K. Lewis, London.

    Google Scholar 

  4. Williams, G. C. (1957) Pleiotropy, natural selection and the evolution of senescence, Evolution, 11, 398–411.

    Google Scholar 

  5. Kirkwood, T. B. L. (1977) Evolution of ageing, Nature, 270, 301–304.

    Article  CAS  PubMed  Google Scholar 

  6. Jemielity, S., Chapuisat, M., Parker, J. D., and Keller, L. (2005) Long live the queen: studying aging in social insects, Age (Dordr.), 27, 241–248.

    Article  CAS  Google Scholar 

  7. Heinze, J., and Schrempf, A. (2008) Aging and reproduction in social insects–a mini–review, Gerontology, 54, 160–167.

    Article  PubMed  Google Scholar 

  8. Jones, O. R., Scheuerlein, A., Salguero–Gomez, R., Camarda, C. G., Schaible, R., Casper, B. B., Dahlgren, J. P., Ehrlen, J., Garcia, M. B., Menges, E. S., Quintana–Ascencio, P. F., Caswell, H., Baudisch, A., and Vaupel, J. W. (2014) Diversity of ageing across the tree of life, Nature, 505, 169–173.

    Article  CAS  PubMed  Google Scholar 

  9. Skulachev, V. P. (1997) Aging is a specific biological function rather than the result of a disorder in complex living systems: biochemical evidence in support of Weismann’s hypothesis, Biochemistry (Moscow), 62, 1191–1195.

    CAS  Google Scholar 

  10. Skulachev, M. V., and Skulachev, V. P. (2014) New data on programmed aging–slow phenoptosis, Biochemistry (Moscow), 79, 977–993.

    Article  CAS  Google Scholar 

  11. Skulachev, M. V., Severin, F. F., and Skulachev, V. P. (2015) Aging as an evolvability–increasing program which can be switched off by organism to mobilize additional resources for survival, Curr. Aging Sci., 8, 95–109.

    Article  PubMed  Google Scholar 

  12. Markov, A. V. (2012) Can kin selection facilitate the evolution of the genetic program of senescence? Biochemistry (Moscow), 77, 733–337.

    Article  CAS  Google Scholar 

  13. Chistyakov, V. A., and Denisenko, Y. V. (2015) Aging saves populations from extinction under lack of resources: in silico experiments, Biochemistry (Moscow), 80, 636–639.

    Article  CAS  Google Scholar 

  14. Chistyakov, V. A., Denisenko, Y. V., and Bren, A. B. (2018) Presence of old individuals in a population accelerates and optimizes the process of selection: in silico experiments, Biochemistry (Moscow), 83, 159–167.

    Article  CAS  Google Scholar 

  15. Markov, A. V., Barg, M. A., and Yakovleva, E. U. (2018) Can aging develop as an adaptation to optimize natural selection? (Application of computer modeling for searching some conditions, when the “Fable about hares” is possible to explain the evolution of aging), Biochemistry (Moscow), 83, 1504–1516.

    Article  CAS  Google Scholar 

  16. Kirkwood, T. B. L. (2010) Systems biology of ageing and longevity, Phil. Trans. R. Soc. B, 366, 64–70.

    Article  Google Scholar 

  17. Brent, L. J., Franks, D. W., Foster, E. A., Balcomb, K. C., Cant, M. A., and Croft, D. P. (2015) Ecological knowledge, leadership, and the evolution of menopause in killer whales, Curr. Biol., 25, 746–750.

    CAS  PubMed  Google Scholar 

  18. Nusbaum, N. J. (1996) What good is it to get old? Med. Hypotheses, 47, 77–79.

    Article  CAS  PubMed  Google Scholar 

  19. Keller, L., and Jemielity, S. (2006) Social insects as a model to study the molecular basis of ageing, Exp. Gerontol., 41, 553–556.

    Article  CAS  PubMed  Google Scholar 

  20. Cohen, A. A. (2017) Aging across the tree of life: the importance of a comparative perspective for the use of animal models in aging, Biochim. Biophys. Acta, 1864, 2680–2689.

    Article  CAS  Google Scholar 

  21. Gavrilov, L. A., and Gavrilova, N. S. (1991) The Biology of Life Span: A Quantitative Approach, Harwood Academic Publisher, New York.

    Google Scholar 

  22. Bychkovskaia, I. B., Mylnikov, S. V., and Mozhaev, G. A. (2016) Discontinuity of the annuity curves. III. Two types of vital variability in Drosophila melanogaster, Adv. Gerontol., 29, 541–547.

    CAS  PubMed  Google Scholar 

  23. De Magalhaes, J. P., Costa, J., and Church, G. M. (2007) An analysis of the relationship between metabolism, developmental schedules, and longevity using phylogenetic independent contrasts, J. Gerontol. A Biol. Sci. Med. Sci., 62, 149–160.

    PubMed  Google Scholar 

  24. Shilovsky, G. A., Putyatina, T. S., Markov, A. V., and Skulachev, V. P. (2015) Contribution of quantitative methods of estimating mortality dynamics to explaining mechanisms of aging, Biochemistry (Moscow), 80, 1547–1559.

    Article  CAS  Google Scholar 

  25. Terres, J. (1980) The Audubon Society Encyclopedia of North American Birds, Knopf, New York.

    Google Scholar 

  26. Morgan, C. C., Mc Cartney, A. M., Donoghue, M. T. A., Loughran, N. B., Spillane, C., Teeling, E. C., and O’Connell, M. J. (2013) Molecular adaptation of telomere associated genes in mammals, BMC Evol. Biol., 13,251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Andziak, B., O’Connor, T. P., and Buffenstein, R. (2005) Antioxidants do not explain the disparate longevity between mice and the longest–living rodent, the naked mole–rat, Mech. Ageing Dev., 126, 1206–1212.

    Article  CAS  PubMed  Google Scholar 

  28. Andziak, B., O’Connor, T. P., Qi, W., DeWaal, E. M., Pierce, A., Chaudhuri, A. R., Van Remmen, H., and Buffenstein, R. (2006) High oxidative damage levels in the longest–living rodent, the naked mole–rat, Aging Cell, 5, 463–471.

    Article  CAS  PubMed  Google Scholar 

  29. Baudisch, A., and Vaupel, J. (2010) Senescence vs. sustenance: evolutionary–demographic models of aging, Demogr. Res., 23, 655–668.

    Article  Google Scholar 

  30. De Loof, A. (2011) Longevity and aging in insects: is reproduction costly; cheap; beneficial or irrelevant? A critical evaluation of the “trade–off” concept, J. Insect Physiol., 57, 1–11.

    Article  CAS  PubMed  Google Scholar 

  31. Buffenstein, R. (2008) Negligible senescence in the longest living rodent, the naked mole–rat: insights from a successfully aging species, J. Comp. Physiol. B, 178, 439–445.

    PubMed  Google Scholar 

  32. Burger, O., Baudisch, A., and Vaupel, J. W. (2012) Human mortality improvement in evolutionary context, Proc. Natl. Acad. Sci. USA, 109, 18210–18214.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Skulachev, V. P., Holtze, S., Vyssokikh, M. Y., Bakeeva, L. E., Skulachev, M. V., Markov, A. V., Hildebrandt, T. B., and Sadovnichii, V. (2017) Neoteny, prolongation of youth: from naked mole rats to “naked apes” (humans), Physiol. Rev., 97, 699–720.

    PubMed  Google Scholar 

  34. Haddad, L. S., Kelbert, L., and Hulbert, A. J. (2007) Extended longevity of queen honey bees compared to workers is associated with peroxidation–resistant membranes, Exp. Gerontol., 42, 601–609.

    Article  CAS  PubMed  Google Scholar 

  35. Holldobler, B., and Wilson, E. O. (1990) The Ants, The Belknap Press of Harvard University Press, Cambridge.

    Book  Google Scholar 

  36. Schultz, T. R. (2000) In search of ant ancestors, Proc. Natl. Acad. Sci. USA, 97, 14028–14029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zakharov, A. A. (2015) Ants of Forest Communities, Their Life and Role in the Forest [in Russian], Tovarishchestvo Nauchnykh Publikatsii KMK, Moscow.

    Google Scholar 

  38. Zakharov, A. A. (1978) Ant, Family, Colony [in Russian], Nauka, Moscow.

    Google Scholar 

  39. Crespi, B. (2014) The insectan apes, Hum. Nat., 25, 6–27.

    Article  PubMed  Google Scholar 

  40. Crespi, B. J. (2016) The convergent and divergent evolution of social–behavioral economics, Behav. Brain Sci., 39, e96.

    Article  PubMed  Google Scholar 

  41. Reznikova, Zh. I., and Ryabko, B. Y. (1995) Transmission of information on the quantitative characteristics of an object in ants, Zh. Vyssh. Nervn. Deyat., 45, 500–509.

    Google Scholar 

  42. Currie, C. C., Poulsen, M., Mendenhall, J., Boomsma, J., and Billen, J. (2006) Coevolved crypts and exocrine glands support mutualistic bacteria in fungus–growing ants, Science, 311, 81–83.

    Article  CAS  PubMed  Google Scholar 

  43. Keller, L., and Genoud, M. (1997) Extraordinary lifespan in ants: a test of evolutionary theories of ageing, Nature, 389, 958–960.

    Article  CAS  Google Scholar 

  44. Gosswald, K. (1989) Die Waldameise. Band: Biologische Grundlagen, Okologie und Verhalten, Aula–Verlag, Wiesbaden.

    Google Scholar 

  45. Bier, K. H. (1958) Die Bedeutung der Jungarbeiterinnen fbr die Geschlechtstieraufzucht im Ameisenstaat, Biol. Zentralbl., 77, 257–265.

    Google Scholar 

  46. Dlussky, G. M. (1967) Ants of the Genus Formica [in Russian], Nauka, Moscow.

    Google Scholar 

  47. Vaiserman, A. (2014) Developmental epigenetic programming of caste–specific differences in social insects: an impact on longevity, Curr. Aging Sci., 7, 176–186.

    Article  PubMed  Google Scholar 

  48. Capella, I. C., and Hartfelder, K. (1998) Juvenile hormone effect on DNA synthesis and apoptosis in caste–specific differentiation of the larval honey bee (Apis mellifera L.) ovary, J. Insect. Physiol., 44, 385–391.

    Article  CAS  PubMed  Google Scholar 

  49. Azevedo, D. O., Zanuncio, J. C., Delabie, J. H., and Serrao, J. E. (2011) Temporal variation of vitellogenin synthesis in Ectatomma tuberculatum (Formicidae: Ectatomminae) workers, J. Insect. Physiol., 57, 972–977.

    Article  CAS  PubMed  Google Scholar 

  50. Ichinose, K., and Lenoir, A. (2009) Ontogeny of hydrocarbon profiles in the ant Aphaenogaster senilis and effects of social isolation, C. R. Biol., 332, 697–703.

    Article  CAS  PubMed  Google Scholar 

  51. Kutter, H. (1977) Hymenoptera–Formicidae, in Fauna Insecta Helvetica (Sauter, W., ed.), Vol. 6, Schweizerische Entomologische Gesellschaft, Zurich.

  52. Prescott, H. W. (1973) Longevity of Lasius flavus (F.) (Hym. Formicidae): a sequel, Entomol. Mon. Mag., 109,124.

    Google Scholar 

  53. Janet, C. (1904) Observations sur les Fourmis, Imprimerie Ducourtieux et Gout, Limoges.

    Google Scholar 

  54. Vonshak, M., and Shlagman, A. (2009) A Camponotus fellah queen sets a record for Israeli ant longevity, Isr. J. Entomol., 39, 165–169.

    Google Scholar 

  55. Haskins, C. P., and Haskins, E. F. (1992) Note on extraordinary longevity in a queen of the formicine ant genus Camponotus, Psyche, 90, 163–174.

    Article  Google Scholar 

  56. Pamilo, P. (1991) Life span of queens in the ant Formica exsecta, Insectes Soc., 38, 111–119.

    Article  Google Scholar 

  57. Horstmann, K. (1983) Uber die mittlere Lebensdauer von Waldameisen–Koniginnen der Art, Formica polyctena Forster (Formicidae), Waldhygiene, 15, 15–20.

    Google Scholar 

  58. Porter, S. D., and Jorgensen, C. D. (1988) Longevity of harvester ant colonies in southern Idaho, J. Range. Manag., 41, 104–107.

    Article  Google Scholar 

  59. Gordon, D. M. (1991) Behavioral flexibility and the foraging ecology of seed–eating ant, Am. Nat., 138, 379–411.

    Article  Google Scholar 

  60. Casevitz–Weulersse, J. (1991) Reproduction et developpement des societes de Crematogaster scutellaris (Olivier, 1791) (Hymenoptera: Formicidae), Ann. Soc. Entomol. Fr., 27, 103–111.

    Google Scholar 

  61. Buschinger, A. (1974) Experimente und Beobachtungen zur Grundung und Entwicklung neuer Sozietaten der Sklavenhaltenden Ameise Harpagoxenus sublaevis (Nyl.), Insectes Soc., 21, 381–406.

    Article  Google Scholar 

  62. Bourke, A. F. G., van der Have, T. M., and Franks, N. R. (1988) Sex ratio determination and worker reproduction in the slave–making ant Harpagoxenus sublaevis, Behav. Ecol. Sociobiol., 23, 333–345.

    Google Scholar 

  63. Heinze, J., and Trenkle, S. (1997) Male polymorphism and gynandromorphs in the ant Cardiocondyla emeryi, Naturwissenschaften, 84, 129–131.

    Article  CAS  Google Scholar 

  64. Donisthorpe, H. J. K. (1936) The oldest insect on record, Entomol. Rec. J. Var., 48, 1–2.

    Google Scholar 

  65. Plateaux, L. (1986) Comparaison des cycles saisonniers, des durees des societes et des productions des trois espices de fourmis Leptothorax du groupe Nylanderi, Actes Coll. Ins. Soc., 3, 221–234.

    Google Scholar 

  66. Keller, L. (1998) Queen lifespan and colony characteristics in ants and termites, Insectes Soc., 45, 235–246.

    Article  Google Scholar 

  67. Autuori, M. (1950) Longevididade de uma colonia de sava (Atta sexdens rubropilosa Forel, 1908) em condizoes de laboratyrio, Cikncia e Cultura, 2, 285–286.

    Google Scholar 

  68. Weber, N. A. (1976) A ten–year colony of Sericomyrmex urichi (Hymenoptera, Formicidae), Ann. Entomol. Soc., 69, 815–819.

    Article  Google Scholar 

  69. Ulloa–Chacyn, P., and Cherix, D. (1989) Etude de quelques facteurs influenzant la fecondite des reines de Wasmannia auropunctata (R.) (Hymenoptera, Formicidae), Actes Coll. Insectes Soc., 5, 121–129.

    Google Scholar 

  70. Haskins, C. P. (1960) Note on the natural longevity of fertile female of Aphaenogaster picea, J. N. Y. Entomol. Soc., 68, 66–67.

    Google Scholar 

  71. Tohme, G., and Tohme, H. (1978) Accroissement de la societe et longevite de la reine et des ouvrieres chez Messor semirufus (Andre) (Hym. Formicoidea), C. R. Acad. Sc. Paris, 286, 961–963.

    Google Scholar 

  72. Tschinkel, W. R. (1987) Fire ant queen longevity and age: estimation by sperm depletion, Ann. Entomol. Soc., 80, 263–266.

    Article  Google Scholar 

  73. Peacock, A. D., and Baxter, A. T. (1950) Studies in Pharaoh’s ant Monomorium pharaonis (L.). 3. Life history, Entomol. Mon. Mag., 86, 171–178.

    Google Scholar 

  74. Haskins, C. P., and Haskins, E. F. (1980) Notes on female and worker survivorship in the archaic ant genus Camponotus, Insectes Soc., 27, 345–350.

    Article  Google Scholar 

  75. Hartmann, A., and Heinze, J. (2003) Lay eggs, live longer: division of labor and life span in a clonal ant species, Evolution, 57, 2424–2429.

    Google Scholar 

  76. Tsuji, K., Nakata, K., and Heinze, J. (1996) Lifespan and reproduction in a queenless ant, Naturwissenschaften, 83, 577–578.

    Article  CAS  Google Scholar 

  77. Seppa, P. (1994) Sociogenetic organization of the ants Myrmica ruginodis and Myrmica lobicornis: number, relatedness and longevity of reproducing individuals, J. Evol. Biol., 7, 71–95.

    Google Scholar 

  78. Elmes, G. W., and Petal, J. (1990) Queen number as an adaptable trait: evidence from wild populations of two red ant species (genus Myrmica), J. Anim. Ecol., 59, 675–690.

    Article  Google Scholar 

  79. Terron, G. (1977) Evolution des colonies de Tetraponera anthracina Santschi (Formicidae, Pseudomyrmecinae) avec reines, Bull. Biol. Fr. Belg., 61, 115–181.

    Google Scholar 

  80. Keller, L., Passera, L., and Suzzoni, J. P. (1989) Queen execution in the Argentine ant Iridomyrmex humilis (Mayr), Physiol. Entomol., 14, 157–163.

    Article  Google Scholar 

  81. Smith, M. R. (1928) The biology of Tapinoma sessile say, an important house–infesting ant, Ann. Entomol. Soc. Am., 21, 307–330.

    Article  Google Scholar 

  82. Keller, L., and Reeve, H. K. (1994) Genetic variability, queen number, and polyandry in social Hymenoptera, Evolution, 38, 694–704.

    Google Scholar 

  83. Bartz, S. H., and Holldobler, B. (1982) Colony founding in Myrmecocystus mimicus Wheeler (Hymenoptera, Formicidae) and the evolution of foundress associations, Behav. Ecol. Sociobiol., 10, 137–147.

    Article  Google Scholar 

  84. Provost, E. (1985) A study on the closure of ant societies: I. Analysis of interactions involved in experimental encounters between worker ants of the same species genus (Leptothorax or Camponotus lateralis) but from different societies, Insectes Soc., 32, 445–462.

    Article  Google Scholar 

  85. Rosengren, R., Sundstrom, L., and Fortelius, W. (1993) Monogyny and polygyny in Formica ants: the result of alternative dispersal tactics? in Queen Number and Sociality in Insects (Keller, L., ed.) Oxford University Press, Oxford.

    Google Scholar 

  86. Bernard, F. (1968) Les Fourmis d’Europe Occidentale et Septentrionale, Masson et Cie, Paris.

    Google Scholar 

  87. Wilson, E. O. (1985) The sociogenesis of insect colonies, Science, 228, 1489–1495.

    Article  CAS  PubMed  Google Scholar 

  88. Nonacs, P. (1986) Ant reproductive strategies and sex allocation theory, Q. Rev. Biol., 61, 1–21.

    Article  Google Scholar 

  89. Lubertazzi, D. (2012) The biology and natural history of Aphaenogaster rudis, Psyche, 2012, 752815.

    Google Scholar 

  90. Corbara, B., Lachaud, J. P., and Fresneau, D. (1989) Individual variability, social structure and division of labour in the Ponerine ant Ectatomma ruidum Roger (Hymenoptera, Formicidae), Ethology, 82, 89–100.

    Google Scholar 

  91. Ross, K. G., and Keller, L. (1995) Ecology and evolution of social organization–insights from fire ants and other high–ly eusocial insects, Ann. Rev. Ecol. Syst., 26, 631–656.

    Article  Google Scholar 

  92. Peacock, A. D., Sudd, J. H., and Baxter, A. T. (1955) Studies in Pharaoh’s ant Monomorium pharaonis (L.). II. Colony foundation, Entomol. Mon. Mag., 91, 125–129.

    Google Scholar 

  93. Harada, A. Y. (1990) Ant pests of the Tapinomini tribe, in Applied Myrmecology: A World Perspective (Vander Meer, R. K., Jaffe, K., and Cedeno, A., eds.), Westview Press, Boulder.

    Google Scholar 

  94. Keller, L. (1993) Queen Number and Sociality in Insects, Oxford University Press, Oxford.

    Google Scholar 

  95. Giraldo, Y. M., Kamhi, J. F., Fourcassie, V., Moreau, M., Robson, S. K., Rusakov, A., Wimberly, L., Diloreto, A., Kordek, A., and Traniello, J. F. (2016) Lifespan behavioural and neural resilience in a social insect, Proc. Biol. Sci., 283, 20152603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Haight, K. L. (2012) Patterns of venom production and temporal polyethism in workers of Jerdon’s jumping ant, Harpegnathos saltator, J. Insect Physiol., 58, 1568–1574.

    Article  CAS  PubMed  Google Scholar 

  97. Boomsma, J. J., Baer, B., and Heinze, J. (2005) The evolution of male traits in social insects, Annu. Rev. Entomol., 50, 395–420.

    Article  CAS  PubMed  Google Scholar 

  98. Carey, J. R. (2001) Demographic mechanisms for the evolution of long life in social insects, Exp. Gerontol., 36, 713–722.

    Article  CAS  PubMed  Google Scholar 

  99. Le Bourg, E. (1998) Evolutionary theories of aging: handle with care, Gerontology, 44, 345–348.

    Article  PubMed  Google Scholar 

  100. Keller, L., and Genoud, M. (1999) Evolutionary theories of aging. 1. The need to understand the process of natural selection, Gerontology, 45, 336–338.

    Article  CAS  PubMed  Google Scholar 

  101. Schrempf, A., and Heinze, J. (2007) Back to one: consequences of derived monogyny in an ant with polygynous ancestors, J. Evol. Biol., 20, 792–799.

    Article  CAS  PubMed  Google Scholar 

  102. Schrempf, A., Cremer, S., and Heinze, J. (2011) Social influence on age and reproduction: reduced lifespan and fecundity in multi–queen ant colonies, J. Evol. Biol., 24, 1455–1461.

    Article  CAS  PubMed  Google Scholar 

  103. Kohlmeier, P., Negroni, M. A., Kever, M., Emmling, S., Stypa, H., Feldmeyer, B., and Foitzik, S. (2017) Intrinsic worker mortality depends on behavioral caste and the queens’ presence in a social insect, Naturwissenschaften, 104,34.

    Article  CAS  PubMed  Google Scholar 

  104. Kramer, B. H., Schaible, R., and Scheuerlein, A. (2016) Worker lifespan is an adaptive trait during colony establishment in the long–lived ant Lasius niger, Exp. Gerontol., 85, 18–23.

    Article  PubMed  Google Scholar 

  105. Dlussky, G. M. (1981) Ants of Deserts [in Russian], Nauka, Moscow.

    Google Scholar 

  106. Khalyavkin, A. V. (2001) Influence of environment on the mortality pattern of potentially non–senescent organisms. General approach and comparison with real populations, Adv. Gerontol., 7, 46–49.

    Google Scholar 

  107. Kramer, B. H., and Schaible, R. (2013) Life span evolution in eusocial workers–a theoretical approach to understanding the effects of extrinsic mortality in a hierarchical system, PLoS One, 8, e61813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ulrich, Y., Saragosti, J., Tokita, C. K., Tarnita, C. E., and Kronauer, D. J. C. (2018) Fitness benefits and emergent division of labour at the onset of group living, Nature, 560, 635–638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Tsuji, K., Kikuta, N., and Kikuchi, T. (2012) Determination of the cost of worker reproduction via diminished life span in the ant Diacamma sp., Evolution, 66, 1322–1331.

    Article  PubMed  Google Scholar 

  110. Franklin, E. L., Robinson, E. J., Marshall, J. A., Sendova–Franks, A. B., and Franks, N. R. (2012) Do ants need to be old and experienced to teach? J. Exp. Biol., 215, 1287–1292.

    Article  PubMed  Google Scholar 

  111. Chapuisat, M., and Keller, L. (2002) Division of labour influences the rate of ageing in weaver ant workers, Proc. Biol. Sci., 269, 909–913.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Moron, D., Lenda, M., Skorka, P., and Woyciechowski, M. (2012) Short–lived ants take greater risks during food collection, Am. Nat., 180, 744–750.

    Article  PubMed  Google Scholar 

  113. Giraldo, Y. M., and Traniello, J. F. (2014) Worker senescence and the sociobiology of aging in ants, Behav. Ecol. Sociobiol., 68, 1901–1919.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Bourke, A. F. G. (1999) Colony size, social complexity and reproductive conflict in social insects, J. Evol. Biol., 12, 245–257.

    Google Scholar 

  115. Ilies, I., Muscedere, M. L., and Traniello, J. F. (2015) Neuroanatomical and morphological trait clusters in the ant genus Pheidole: evidence for modularity and integration in brain structure, Brain Behav. Evol., 85, 63–76.

    Article  PubMed  Google Scholar 

  116. Muscedere, M. L., and Traniello, J. F. (2012) Division of labor in the hyperdiverse ant genus Pheidole is associated with distinct subcaste–and age–related patterns of worker brain organization, PLoS One, 7, e31618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Riveros, A. J., and Gronenberg, W. (2010) Brain allometry and neural plasticity in the bumblebee Bombus occidentalis, Brain Behav. Evol., 75, 138–148.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Seid, M. A., Harris, K. M., and Traniello, J. F. (2005) Age–related changes in the number and structure of synapses in the lip region of the mushroom bodies in the ant Pheidole dentata, J. Comp. Neurol., 488, 269–277.

    Article  PubMed  Google Scholar 

  119. Seid, M. A., and Traniello, J. F. (2005) Age–related changes in biogenic amines in individual brains of the ant Pheidole dentata, Naturwissenschaften, 92, 198–201.

    Article  CAS  PubMed  Google Scholar 

  120. Seid, M. A., Goode, K., Li, C., and Traniello, J. F. (2008) Age–and subcaste–related patterns of serotoninergic immunoreactivity in the optic lobes of the ant Pheidole dentata, Dev. Neurobiol., 68, 1325–1333.

    Article  PubMed  Google Scholar 

  121. Brady, S. G., Schultz, T. R., Fisher, B. L., and Ward, P. S. (2006) Evaluating alternative hypotheses for the early evolution and diversification of ants, Proc. Natl. Acad. Sci. USA, 103, 18172–18177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Feldmeyer, B., Elsner, D., and Foitzik, S. (2014) Gene expression patterns associated with caste and reproductive status in ants: worker–specific genes are more derived than queen–specific ones, Mol. Ecol., 23, 151–161.

    Article  CAS  PubMed  Google Scholar 

  123. Graff, J., Jemielity, S., Parker, J. D., Parker, K. M., and Keller, L. (2007) Differential gene expression between adult queens and workers in the ant Lasius niger, Mol. Ecol., 16, 675–683.

    Article  CAS  PubMed  Google Scholar 

  124. Feldmeyer, B., Mazur, J., Beros, S., Lerp, H., Binder, H., and Foitzik, S. (2016) Gene expression patterns underlying parasite–induced alterations in host behaviour and life history, Mol. Ecol., 25, 648–660.

    Article  CAS  PubMed  Google Scholar 

  125. Lucas, E. R., Privman, E., and Keller, L. (2016) Higher expression of somatic repair genes in long–lived ant queens than workers, Aging (Albany NY), 8, 1940–1951.

    Article  CAS  Google Scholar 

  126. Horvath, S. (2013) DNA methylation age of human tissues and cell types, Genome Biol., 14, R115.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Levine, M. E., Lu, A. T., Quach, A., Chen, B. H., Assimes, T. L., Bandinelli, S., Hou, L., Baccarelli, A. A., Stewart, J. D., Li, Y., Whitsel, E. A., Wilson, J. G., Reiner, A. P., Aviv, A., Lohman, K., Liu, Y., Ferrucci, L., and Horvath, S. (2018) An epigenetic biomarker of aging for lifespan and healthspan, Aging (Albany NY), 10, 573–591.

    Article  Google Scholar 

  128. Bonasio, R., Li, Q., Lian, J. Mutti, N. S., Jin, L., Zhao, H., Zhang, P., Wen, P., Xiang, H., Ding, Y., Jin, Z., Shen, S. S., Wang, Z., Wang, W., Wang, J., Berger, S. L., Liebig, J., Zhang, G., and Reinberg, D. (2012) Genome–wide and caste–specific DNA methylomes of the ants Camponotus floridanus and Harpegnathos saltator, Curr. Biol., 22, 1755–1764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Bonasio, R., Zhang, G., Ye, C., Mutti, N. S., Fang, X., Qin, N., Donahue, G., Yang, P., Li, Q., Li, C., Zhang, P., Huang, Z., Berger, S. L., Reinberg, D., Wang, J., and Liebig, J. (2010) Genomic comparison of the ants Camponotus floridanus and Harpegnathos saltator, Science, 329, 1068–1071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Libbrecht, R., Oxley, P. O., Keller, L., and Kronauer, D. J. C. (2016) Robust DNA methylation in the clonal raider ant brain, Curr. Biol., 26, 391–395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Patel, A., Fondrk, M. K., Kaftanoglu, O., Emore, C., Hunt, G., Frederick, K., and Amdam, G. V. (2007) The making of a queen: TOR pathway is a key player in diphenic caste development, PLoS One, 2, e509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Wheeler, D. E., Buck, N., and Evans, J. D. (2006) Expression of insulin pathway genes during the period of caste determination in the honey bee, Apis mellifera, Insect Mol. Biol., 15, 597–602.

    Article  CAS  PubMed  Google Scholar 

  133. Wheeler, D. E., Buck, N. A., and Evans, J. D. (2014) Expression of insulin/insulin–like signalling and TOR pathway genes in honey bee caste determination, Insect Mol. Biol., 23, 113–121.

    Article  CAS  PubMed  Google Scholar 

  134. Brian, M. V. (1980) Social control over sex and caste in bees, wasps and ants, Biol. Rev., 55, 379–415.

    Article  Google Scholar 

  135. Walker, R. F., Pakula, L. C., Sutcliffe, M. J., Kruk, P. A., Graakjaer, J., and Shay, J. W. (2009) A case study of “disorganized development” and its possible relevance to genetic determinants of aging, Mech. Ageing Dev., 130, 350–356.

    Article  CAS  PubMed  Google Scholar 

  136. Walker, R. F. (2017) On the cause and mechanism of phenoptosis, Biochemistry (Moscow), 82, 1462–1479.

    Article  CAS  Google Scholar 

  137. Lecomte, V. J., Sorci, G., Cornet, S., Jaeger, A., Faivre, B., Arnoux, E., Gaillard, M., Trouve, C., Besson, D., Chastel, O., and Weimerskirch, H. (2010) Patterns of aging in the long–lived wandering albatross, Proc. Natl. Acad. Sci. USA, 107, 6370–6375.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Negroni, M. A., Jongepier, E., Feldmeyer, B., Kramer, B. H., and Foitzik, S. (2016) Life history evolution in social insects: a female perspective, Curr. Opin. Insect Sci., 16, 51–57.

    Article  PubMed  Google Scholar 

  139. Zhang, Y., and Hood, W. R. (2016) Current versus future reproduction and longevity: a re–evaluation of predictions and mechanisms, J. Exp. Biol., 219, 3177–3189.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Shilovsky.

Additional information

Original Russian Text © G. A. Shilovsky, T. S. Putyatina, V. V. Ashapkin, A. A. Rozina, V. A. Lyubetsky, E. P. Minina, I. B. Bychkovskaia, A. V. Markov, V. P. Skulachev, 2018, published in Biokhimiya, 2018, Vol. 83, No. 12, pp. 1827–1843.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shilovsky, G.A., Putyatina, T.S., Ashapkin, V.V. et al. Ants as Object of Gerontological Research. Biochemistry Moscow 83, 1489–1503 (2018). https://doi.org/10.1134/S0006297918120076

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297918120076

Keywords

Navigation