Skip to main content
Log in

Elimination of Senescent Cells: Prospects According to the Subtelomere-Telomere Theory

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Cell senescence is an artificially reversible condition activated by various factors and characterized by replicative senescence and typical general alteration of cell functions, including extra–cellular secretion. The number of senescent cells increases with age and contributes strongly to the manifestations of aging. For these reasons, research is under way to obtain “senolytic” compounds, defined as drugs that eliminate senescent cells and therefore reduce aging–associated decay, as already shown in some experiments on animal models. This objective is analyzed in the context of the programmed aging paradigm, as described by the mechanisms of the subtelomere–telomere theory. In this regard, positive effects of the elimination of senescent cells and limits of this method are discussed. For comparison, positive effects and limits of telomerase activation are also analyzed, as well of the combined action of the two methods and the possible association of opportune gene modifications. Ethical issues associated with the use of these methods are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ben–Porath, I., and Weinberg, R. A. (2005) The signals and pathways activating cellular senescence, Int. J. Biochem. Cell Biol., 37, 961–976.

    Article  CAS  PubMed  Google Scholar 

  2. d’Adda di Fagagna, F., Reaper, P. M., Clay–Farrace, L., Fiegler, H., Carr, P., Von Zglinicki, T., Saretzki, G., Carter, N. P., and Jackson, S. P. (2003) A DNA damage checkpoint response in telomere–initiated senescence, Nature, 426, 194–198.

    Article  CAS  PubMed  Google Scholar 

  3. Collado, M., Blasco, M. A., and Serrano, M. (2007) Cellular senescence in cancer and aging, Cell, 130, 223–233.

    Article  CAS  PubMed  Google Scholar 

  4. Acosta, J. C., O’Loghlen, A., Banito, A., Guijarro, M. V., Augert, A., Raguz, S., Fumagalli, M., Da Costa, M., Brown, C., Popov, N., Takatsu, Y., Melamed, J., d’Adda di Fagagna, F., Bernard, D., Hernando, E., and Gil, J. (2008) Chemokine signaling via the CXCR2 receptor reinforces senescence, Cell, 133, 1006–1018.

    Article  CAS  PubMed  Google Scholar 

  5. Cristofalo, V. J., and Pignolo, R. J. (1993) Replicative senescence of human fibroblast–like cells in culture, Physiol. Rev., 73, 617–638.

    Article  CAS  PubMed  Google Scholar 

  6. Shelton, D. N., Chang, E., Whittier, P. S., Choi, D., and Funk, W. D. (1999) Microarray analysis of replicative senescence, Curr. Biol., 9, 939–945.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang, H., Pan, K. H., and Cohen, S. N. (2003) Senescence–specific gene expression fingerprints reveal cell–type–dependent physical clustering of up–regulated chromosomal loci, Proc. Natl. Acad. Sci. USA, 100, 3251–3256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Campisi, J., and d’Adda di Fagagna, F. (2007) Cellular senescence: when bad things happen to good cells, Nat. Rev. Mol. Cell. Biol., 8, 729–740.

    Article  CAS  PubMed  Google Scholar 

  9. Kirkland, J. L., and Tchkonia, T. (2017) Cellular senescence: a translational perspective, EBioMedicine, 21, 21–28.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Van Deursen, J. M. (2014) The role of senescent cells in ageing, Nature, 509, 439–446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Coppe, J.–P., Patil, C. K., Rodier, F., Sun, Y., Munoz, D. P., Goldstein, J., Nelson, P. S., Desprez, P. Y., and Campisi, J. (2008) Senescence–associated secretory pheno–types reveal cell–nonautonomous functions of oncogenic RAS and the p53 tumor suppressor, PLoS Biol., 6, 2853–2868.

    Article  CAS  PubMed  Google Scholar 

  12. Rodier, F., Coppe, J. P., Patil, C. K., Hoeijmakers, W. A., Munoz, D. P., Raza, S. R., Freund, A., Campeau, E., Davalos, A. R., and Campisi, J. (2009) Persistent DNA damage signalling triggers senescence–associated inflammatory cytokine secretion, Nat. Cell. Biol., 11, 973–979; erratum (2009), 11, 1272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang, E. (1995) Senescent human fibroblasts resist programmed cell death, and failure to suppress bcl2 is involved, Cancer Res., 55, 2284–2292.

    CAS  PubMed  Google Scholar 

  14. Beausejour, C. M., Krtolica, A., Galimi, F., Narita, M., Lowe, S. W., Yaswen, P., and Campisi, J. (2003) Reversal of human cellular senescence: roles of the p53 and p16 path–ways, EMBO J., 22, 4212–4222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Krishnamurthy, J., Torrice, C., Ramsey, M. R., Kovalev, G. I., Al–Regaiey, K., Su, L., and Sharpless, N. E. (2014) Ink4a/Arf expression is a biomarker of aging, J. Clin. Invest., 114, 1299–1307.

    Article  Google Scholar 

  16. Childs, B. G., Durik, M., Baker, D. J., and van Deursen, J. M. (2015) Cellular senescence in aging and age–related disease: from mechanisms to therapy, Nat. Med., 21, 1424–1435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Baker, D. J., Childs, B. G., Durik, M., Wijers, M. E., Sieben, C. J., Zhong, J., Saltness, R. A., Jeganathan, K. B., Verzosa, G. C., Pezeshki, A., Khazaie, K., Miller, J. D., and van Deursen, J. M. (2016) Naturally occurring p16(Ink4a)–positive cells shorten healthy lifespan, Nature, 530, 184–189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Baker, D. J., Jeganathan, K. B., Cameron, J. D., Thompson, M., Juneja, S., Kopecka, A., Kumar, R., Jenkins, R. B., de Groen, P. C., Roche, P., and van Deursen, J. M. (2004) BubR1 insufficiency causes early onset of aging–associated phenotypes and infertility in mice, Nat. Genet., 36, 744–749.

    Article  CAS  PubMed  Google Scholar 

  19. Baker, D. J., Perez–Terzic, C., Jin, F., Pitel, K. S., Niederlander, N. J., Jeganathan, K., Yamada, S., Reyes, S., Rowe, L., Hiddinga, H. J., Eberhardt, N. L., Terzic, A., and van Deursen, J. M. (2008) Opposing roles for p16Ink4a and p19Arf in senescence and ageing caused by BubR1 insufficiency, Nat. Cell. Biol., 10, 825–836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Baker, D. J., Wijshake, T., Tchkonia, T., LeBrasseur, N. K., Childs, B. G., van de Sluis, B., Kirkland, J. L., and van Deursen, J. M. (2011) Clearance of p16Ink4a–positive senescent cells delays ageing–associated disorders, Nature, 479, 232–236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chang, J., Wang, Y., Shao, L., Laberge, R. M., Demaria, M., Campisi, J., Janakiraman, K., Sharpless, N. E., Ding, S., Feng, W., Luo, Y., Wang, X., Aykin–Burns, N., Krager, K., Ponnappan, U., Hauer–Jensen, M., Meng, A., and Zhou, D. (2016) Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice, Nat. Med., 22, 78–83.

    Article  CAS  PubMed  Google Scholar 

  22. Zhu, Y., Tchkonia, T., Pirtskhalava, T., Gower, A. C., Ding, H., Giorgadze, N., Palmer, A. K., Ikeno, Y., Hubbard, G. B., Lenburg, M., O’Hara, S. P., LaRusso, N. F., Miller, J. D., Roos, C. M., Verzosa, G. C., LeBrasseur, N. K., Wren, J. D., Farr, J. N., Khosla, S., Stout, M. B., McGowan, S. J., Fuhrmann–Stroissnigg, H., Gurkar, A. U., Zhao, J., Colangelo, D., Dorronsoro, A., Ling, Y. Y., Barghouthy, A. S., Navarro, D. C., Sano, T., Robbins, P. D., Niedernhofer, L. J., and Kirkland, J. L. (2015) The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs, Aging Cell, 14, 644–658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fuhrmann–Stroissnigg, H., Ling, Y. Y., Zhao, J., McGowan, S. J., Zhu, Y., Brooks, R. W., Grassi, D., Gregg, S. Q., Stripay, J. L., Dorronsoro, A., Corbo, L., Tang, P., Bukata, C., Ring, N., Giacca, M., Li, X., Tchkonia, T., Kirkland, J. L., Niedernhofer, L. J., and Robbins, P. D. (2017) Identification of HSP90 inhibitors as a novel class of senolytics, Nat. Commun., 8,422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schafer, M. J., White, T. A., Iijima, K., Haak, A. J., Ligresti, G., Atkinson, E. J., Oberg, A. L., Birch, J., Salmonowicz, H., Zhu, Y., Mazula, D. L., Brooks, R. W., Fuhrmann–Stroissnigg, H., Pirtskhalava, T., Prakash, Y. S., Tchkonia, T., Robbins, P. D., Aubry, M. C., Passos, J. F., Kirkland, J. L., Tschumperlin, D. J., Kita, H., and Le Brasseur, N. K. (2017) Cellular senescence mediates fibrotic pulmonary disease, Nat. Commun., 8, 14532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jeon, O. H., Kim, C., Laberge, R. M., Demaria, M., Rathod, S., Vasserot, A. P., Chung, J. W., Kim, D. H., Poon, Y., David, N., B1aker, D. J., van Deursen, J. M., Campisi, J., and Elisseeff, J. H. (2017) Local clearance of senescent cells attenuates the development of post–traumatic osteoarthritis and creates a pro–regenerative environment, Nat. Med., 23, 775–781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Baar, M. P., Brandt, R. M. C., Putavet, D. A., Klein, J. D. D., Derks, K. W. J., Bourgeois, B. R. M., Stryeck, S., Rijksen, Y., van Willigenburg, H., Feijtel, D. A., van der Pluijm, I., Essers, J., van Cappellen, W. A., van Ijcken, W. F., Houtsmuller, A. B., Pothof, J., de Bruin, R. W. F., Madl, T., Hoeijmakers, J. H. J., Campisi, J., and de Keizer, P. L. J. (2017) Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging, Cell, 169, 132–147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yosef, R., Pilpel, N., Tokarsky–Amiel, R., Biran, A., Ovadya, Y., Cohen, S., Vadai, E., Dassa, L., Shahar, E., Condiotti, R., Ben–Porath, I., and Krizhanovsky, V. (2016) Directed elimination of senescent cells by inhibition of BCL–W and BCL–XL, Nat. Commun., 7, 11190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Libertini, G. (1988) An adaptive theory of the increasing mortality with increasing chronological age in populations in the wild, J. Theor. Biol., 132, 145–162.

    Article  CAS  PubMed  Google Scholar 

  29. Holmes, D. J., and Austad, S. N. (1995) Birds as animal models for the comparative biology of aging: a prospectus, J. Gerontol. A Biol. Sci., 50, B59–B66.

    Article  CAS  Google Scholar 

  30. Nussey, D. H., Froy, H., Lemaitre, J. F., Gaillard, J. M., and Austad, S. N. (2013) Senescence in natural populations of animals: widespread evidence and its implications for bio–gerontology, Ageing Res. Rev., 12, 214–225.

    Article  PubMed  Google Scholar 

  31. Jones, O. R., Scheuerlein, A., Salguero–Gomez, R., Camarda, C. G., Schaible, R., Casper, B. B., Dahlgren, J. P., Ehrlen, J., Garcia, M. B., Menges, E. S., Quintana–Ascencio, P. F., Caswell, H., Baudisch, A., and Vaupel, J. W. (2014) Diversity of ageing across the tree of life, Nature, 505, 169–173.

    Article  CAS  PubMed  Google Scholar 

  32. Finch, C. E. (1990) Longevity, Senescence, and the Genome, The University of Chicago Press, Chicago.

    Google Scholar 

  33. Comfort, A. (1979) The Biology of Senescence, Elsevier North Holland, New York.

    Google Scholar 

  34. Medvedev, Z. A. (1990) An attempt at a rational classification of theories of ageing, Biol. Rev. Camb. Philos. Soc., 65, 375–398.

    Article  CAS  PubMed  Google Scholar 

  35. Weinert, B. T., and Timiras, P. S. (2003) Invited review: theories of aging, J. Appl. Physiol., 95, 1706–1716.

    Article  CAS  PubMed  Google Scholar 

  36. Libertini, G. (2015) Non–programmed versus programmed aging paradigm, Curr. Aging Sci., 8, 56–68.

    Article  PubMed  Google Scholar 

  37. Medawar, P. B. (1952) An Unsolved Problem in Biology, H. K. Lewis, London. Reprinted in: Medawar, P. B. (1957) The Uniqueness of the Individual, Methuen, London.

    Google Scholar 

  38. Hamilton, W. D. (1966) The moulding of senescence by natural selection, J. Theor. Biol., 12, 12–45.

    Article  CAS  PubMed  Google Scholar 

  39. Edney, E. B., and Gill, R. W. (1968) Evolution of senescence and specific longevity, Nature, 220, 281–282.

    Article  CAS  PubMed  Google Scholar 

  40. Mueller, L. D. (1987) Evolution of accelerated senescence in laboratory populations of Drosophila, Proc. Natl. Acad. Sci. USA, 84, 1974–1977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Williams, G. C. (1957) Pleiotropy, natural selection and the evolution of senescence, Evolution, 11, 398–411.

    Google Scholar 

  42. Rose, M. R. (1991) Evolutionary Biology of Aging, Oxford University Press, New York.

    Google Scholar 

  43. Kirkwood, T. B. (1977) Evolution of ageing, Nature, 270, 301–304.

    Article  CAS  PubMed  Google Scholar 

  44. Kirkwood, T. B., and Holliday, R. (1979) The evolution of ageing and longevity, Proc. R. Soc. Lond. B Biol. Sci., 205, 531–546.

    Article  CAS  PubMed  Google Scholar 

  45. Skulachev, V. P. (1997) Aging is a specific biological function rather than the result of a disorder in complex living systems: biochemical evidence in support of Weismann’s hypothesis, Biochemistry (Moscow), 62, 1191–1195.

    CAS  Google Scholar 

  46. Libertini, G. (2012) Classification of phenoptotic phenomena, Biochemistry (Moscow), 77, 707–715.

    Article  CAS  Google Scholar 

  47. Skulachev, V. P. (1999) Phenoptosis: programmed death of an organism, Biochemistry (Moscow), 64, 1418–1426.

    CAS  Google Scholar 

  48. Libertini, G. (2009) The role of telomere–telomerase system in age–related fitness decline, a tameable process, in Telomeres: Function, Shortening and Lengthening (Mancini, L., ed.) Nova Science Publishers, New York, pp. 77–132.

    Google Scholar 

  49. Libertini, G. (2009) Prospects of a longer life span beyond the beneficial effects of a healthy lifestyle, in Handbook on Longevity: Genetics, Diet and Disease (Bentely, J. V., and Keller, M. A., eds.) Nova Science Publishers Inc., New York, pp. 35–95.

    Google Scholar 

  50. Olshansky, S. J., Hayflick, L., and Carnes, B. A. (2002) Position statement on human aging, J. Gerontol. A Biol. Sci. Med. Sci., 57, B292–297.

    Article  PubMed  Google Scholar 

  51. Hayflick, L. (2007) Biological aging is no longer an unsolved problem, Ann. N. Y. Acad. Sci., 1100, 1–13.

    Article  CAS  PubMed  Google Scholar 

  52. Kirkwood, T. B., and Melov, S. (2011) On the programmed/non–programmed nature of ageing within the life history, Curr. Biol., 21, R701–707.

    Article  CAS  PubMed  Google Scholar 

  53. De Grey, A. D. (2015) Do we have genes that exist to hasten aging? New data, new arguments, but the answer is still no, Curr. Aging Sci., 8, 24–33.

    Article  PubMed  Google Scholar 

  54. Gladyshev, V. N. (2016) Aging: progressive decline in fitness due to the rising deleteriome adjusted by genetic, environmental, and stochastic processes, Aging Cell, 15, 594–602.

    CAS  PubMed  Google Scholar 

  55. Kowald, A., and Kirkwood, T. B. (2016) Can aging be programmed? A critical literature review, Aging Cell, 15, 986–998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Libertini, G. (2008) Empirical evidence for various evolutionary hypotheses on species demonstrating increasing mortality with increasing chronological age in the wild, ScientificWorldJournal, 8, 182–193.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Mitteldorf, J. (2013) Telomere biology: cancer firewall or aging clock? Biochemistry (Moscow), 78, 1054–1060.

    Article  CAS  Google Scholar 

  58. Fossel, M. B. (2004) Cells, Aging and Human Disease, Oxford University Press, New York.

    Google Scholar 

  59. Olovnikov, A. M. (2003) The redusome hypothesis of aging and the control of biological time during individual development, Biochemistry (Moscow), 68, 2–33.

    Article  CAS  Google Scholar 

  60. Olovnikov, A. M. (2015) Chronographic theory of development, aging, and origin of cancer: role of chronomeres and printomeres, Curr. Aging Sci., 8, 76–88.

    CAS  PubMed  Google Scholar 

  61. Goldsmith, T. C. (2008) Aging, evolvability, and the individual benefit requirement; medical implications of aging theory controversies, J. Theor. Biol., 252, 764–768.

    PubMed  Google Scholar 

  62. Goldsmith, T. C. (2012) On the programmed/non–programmed aging controversy, Biochemistry (Moscow), 77, 729–732.

    Article  CAS  Google Scholar 

  63. Skulachev, M. V., and Skulachev, V. P. (2014) New data on programmed aging–slow phenoptosis, Biochemistry (Moscow), 79, 977–993.

    Article  CAS  Google Scholar 

  64. Libertini, G. (2014) The programmed aging paradigm: how we get old, Biochemistry (Moscow), 79, 1004–1016.

    Article  CAS  Google Scholar 

  65. Libertini, G., and Ferrara, N. (2016) Possible interventions to modify aging, Biochemistry (Moscow), 81, 1413–1428.

    Article  CAS  Google Scholar 

  66. Moyzis, R. K., Buckingham, J. M., Cram, L. S., Dani, M., Deaven, L. L., Jones, M. D., Meyne, J., Ratliff, R. L., and Wu, J. R. (1988) A highly conserved repetitive DNA sequence (TTAGGG)n, present at the telomeres of human chromosomes, Proc. Natl. Acad. Sci. USA, 85, 6622–6626.

    Article  CAS  PubMed  Google Scholar 

  67. Blackburn, E. H. (1991) Structure and function of telomeres, Nature, 350, 569–573.

    Article  CAS  PubMed  Google Scholar 

  68. Olovnikov, A. M. (1971) Principle of marginotomy in template synthesis of polynucleotides, Doklady Biochem., 201, 394–397.

    Google Scholar 

  69. Watson, J. D. (1972) Origin of concatemeric T7 DNA, Nat. New Biol., 239, 197–201.

    Article  CAS  PubMed  Google Scholar 

  70. Olovnikov, A. M. (1973) A theory of marginotomy: the incomplete copying of template margin in enzyme synthesis of polynucleotides and biological significance of the problem, J. Theor. Biol., 41, 181–190.

    Article  CAS  PubMed  Google Scholar 

  71. Greider, C. W., and Blackburn, E. H. (1985) Identification of a specific telomere terminal transferase activity in Tetrahymena extracts, Cell, 43, 405–413.

    Article  CAS  PubMed  Google Scholar 

  72. Van Steensel, B., and de Lange, T. (1997) Control of telomere length by the human telomeric protein TRF1, Nature, 385, 740–743.

    Article  PubMed  Google Scholar 

  73. Hayflick, L., and Moorhead, P. S. (1961) The serial cultivation of human diploid cell strains, Exp. Cell Res., 25, 585–621.

    Article  CAS  PubMed  Google Scholar 

  74. Hayflick, L. (1965) The limited in vitro lifetime of human diploid cell strains, Exp. Cell Res., 37, 614–636.

    Article  CAS  PubMed  Google Scholar 

  75. Blackburn, E. H. (2000) Telomere states and cell fates, Nature, 408, 53–56.

    Article  CAS  PubMed  Google Scholar 

  76. Mefford, H. C., and Trask, B. J. (2002) The complex structure and dynamic evolution of human subtelomeres, Nat. Rev. Genet., 3, 91–102.

    Article  CAS  PubMed  Google Scholar 

  77. Torres, G. A., Gong, Z., Iovene, M., Hirsch, C. D., Buell, C. R., Bryan, G. J., Novak, P., Macas, J., and Jiang, J. (2011) Organization and evolution of subtelomeric satellite repeats in the potato genome, G3 (Bethesda), 1, 85–92.

    Article  CAS  PubMed Central  Google Scholar 

  78. Gottschling, D. E., Aparicio, O. M., Billington, B. L., and Zakian, V. A. (1990) Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription, Cell, 63, 751–762.

    Article  CAS  PubMed  Google Scholar 

  79. Libertini, G. (2015) Phylogeny of aging and related phenoptotic phenomena, Biochemistry (Moscow), 80, 1529–1546.

    Article  CAS  Google Scholar 

  80. Kerr, J. F. R., Wyllie, A. H., and Currie, A. R. (1972) Apoptosis: a basic biological phenomenon with wide–ranging implications in tissue kinetics, Br. J. Cancer, 26, 239–257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wyllie, A. H., Kerr, J. F. R., and Currie, A. R. (1980) Cell death: the significance of apoptosis, Int. Rev. Cytol., 68, 251–306.

    Article  CAS  PubMed  Google Scholar 

  82. Lynch, M. P., Nawaz, S., and Gerschenson, L. E. (1986) Evidence for soluble factors regulating cell death and cell proliferation in primary cultures of rabbit endometrial cells grown on collagen, Proc. Natl. Acad. Sci. USA, 83, 4784–4788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Medh, R. D., and Thompson, E. B. (2000) Hormonal regulation of physiological cell turnover and apoptosis, Cell Tissue Res., 301, 101–124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Alberts, B., Bray, D., Hopkin, K., Johnson, A., Lewis, J., Raff, M., Roberts, K., and Walter, P. (2013) Essential Cell Biology, 4th Edn., Garland Science, New York.

    Book  Google Scholar 

  85. Anversa, P., Kajstura, J., Leri, A., and Bolli, R. (2006) Life and death of cardiac stem cells, Circulation, 113, 1451–1463.

    Article  PubMed  Google Scholar 

  86. Richardson, B. R., Allan, D. S., and Le, Y. (2014) Greater organ involution in highly proliferative tissues associated with the early onset and acceleration of ageing in humans, Exp. Gerontol., 55, 80–91.

    Article  PubMed  Google Scholar 

  87. Reed, J. C. (1999) Dysregulation of apoptosis in cancer, J. Clin. Oncol., 17, 2941–2953.

    Article  CAS  PubMed  Google Scholar 

  88. Rao, M. S., and Mattson, M. P. (2001) Stem cells and aging: expanding the possibilities, Mech. Ageing Dev., 122, 713–734.

    Article  CAS  PubMed  Google Scholar 

  89. Rando, T. A., and Wyss–Coray, T. (2014) Stem cells as vehicles for youthful regeneration of aged tissues, J. Gerontol. A Biol. Sci. Med. Sci., 69 (Suppl. 1), S39–S42.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Mistriotis, P., and Andreadis, S. T. (2017) Vascular aging: molecular mechanisms and potential treatments for vascular rejuvenation, Ageing Res. Rev., 37, 94–116.

    Article  CAS  PubMed  Google Scholar 

  91. Libertini, G., and Ferrara, N. (2016) Aging of perennial cells and organ parts according to the programmed aging paradigm, Age (Dordr.), 38,35.

    Article  Google Scholar 

  92. Libertini, G. (2017) The feasibility and necessity of a revolution in geriatric medicine, OBM Geriatrics, 1, doi: 10.21926/obm.geriat.1702002.

  93. DePinho, R. A. (2000) The age of cancer, Nature, 408, 248–254.

    Article  CAS  PubMed  Google Scholar 

  94. Libertini, G., Rengo, G., and Ferrara, N. (2017) Aging and aging theories, J. Gerontol. Geriatr., 65, 59–77.

    Google Scholar 

  95. Campisi, J. (1997) The biology of replicative senescence, Eur. J. Cancer, 33, 703–709.

    Article  CAS  PubMed  Google Scholar 

  96. Campisi, J. (2003) Cancer and ageing: rival demons? Nat. Rev. Cancer, 3, 339–349.

    Article  CAS  PubMed  Google Scholar 

  97. Wright, W. E., and Shay, J. W. (2005) Telomere biology in aging and cancer, J. Am. Geriatr. Soc., 53, S292–S294.

    Article  PubMed  Google Scholar 

  98. Campisi, J. (2000) Cancer, aging and cellular senescence, In vivo, 14, 183–188.

    CAS  PubMed  Google Scholar 

  99. Libertini, G. (2013) Evidence for aging theories from the study of a hunter–gatherer people (Ache of Paraguay), Biochemistry (Moscow), 78, 1023–1032.

    Article  CAS  Google Scholar 

  100. Klapper, W., Heidorn, K., Kuhne, K., Parwaresch, R., and Krupp, G. (1998) Telomerase activity in “immortal” fish, FEBS Lett., 434, 409–412.

    Article  CAS  PubMed  Google Scholar 

  101. Klapper, W., Kuhne, K., Singh, K. K., Heidorn, K., Parwaresch, R., and Krupp, G. (1998) Longevity of lobsters is linked to ubiquitous telomerase expression, FEBS Lett., 439, 143–146.

    Article  CAS  PubMed  Google Scholar 

  102. Black, H. (2002) Fishing for answers to questions about the aging process, BioScience, 52, 15–18.

    Article  Google Scholar 

  103. Artandi, S. E., and DePinho, R. A. (2010) Telomeres and telomerase in cancer, Carcinogenesis, 31, 9–18.

    Article  CAS  PubMed  Google Scholar 

  104. Dokal, I. (2000) Dyskeratosis congenita in all its forms, Br. J. Haematol., 110, 768–779.

    Article  CAS  PubMed  Google Scholar 

  105. De Lange, T., and Jacks, T. (1999) For better or worse? Telomerase inhibition and cancer, Cell, 98, 273–275.

    Article  PubMed  Google Scholar 

  106. Artandi, S. E., Chang, S., Lee, S. L., Alson, S., Gottlieb, G. J., Chin, L., and DePinho, R. A. (2000) Telomere dys–function promotes non–reciprocal translocations and epithelial cancers in mice, Nature, 406, 641–645.

    Article  CAS  PubMed  Google Scholar 

  107. Artandi, S. E. (2002) Telomere shortening and cell fates in mouse models of neoplasia, Trends Mol. Med., 8, 44–47.

    Article  CAS  PubMed  Google Scholar 

  108. Wu, X., Amos, C. I., Zhu, Y., Zhao, H., Grossman, B. H., Shay, J. W., Luo, S., Hong, W. K., and Spitz, M. R. (2003) Telomere dysfunction: a potential cancer predisposition factor, J. Natl. Cancer Inst., 95, 1211–1218.

    Article  CAS  PubMed  Google Scholar 

  109. Ma, H., Zhou, Z., Wei, S., Liu, Z., Pooley, K. A., Dunning, A. M., Svenson, U., Roos, G., Hosgood, H. D., 3rd, Shen, M., and Wei, Q. (2011) Shortened telomere length is associated with increased risk of cancer: a metaanalysis, PLoS One, 6, e20466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Bernardes de Jesus, B., Vera, E., Schneeberger, K., Tejera, A. M., Ayuso, E., Bosch, F., and Blasco, M. A. (2012) Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer, EMBO Mol. Med., 4, 691–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Rosen, P. (1985) Aging of the immune system, Med. Hypotheses, 18, 157–161.

    Article  CAS  PubMed  Google Scholar 

  112. Hill, K., and Hurtado, A. M. (1996) Ache Life History, Aldine De Gruyter, New York.

    Google Scholar 

  113. Jazwinski, S. M. (1993) The genetics of aging in the yeast Saccharomyces cerevisiae, Genetica, 91, 35–51.

    Article  CAS  PubMed  Google Scholar 

  114. Fabrizio, P., and Longo, V. D. (2007) The chronological life span of Saccharomyces cerevisiae, Methods Mol. Biol., 371, 89–95.

    Article  CAS  PubMed  Google Scholar 

  115. Laun, P., Bruschi, C. V., Dickinson, J. R., Rinnerthaler, M., Heeren, G., Schwimbersky, R., Rid, R., and Breitenbach, M. (2007) Yeast mother cell–specific ageing, genetic (in)stability, and the somatic mutation theory of ageing, Nucleic Acids Res., 35, 7514–7526.

    CAS  Google Scholar 

  116. Kuilman, T., Michaloglou, C., Vredeveld, L. C., Douma, S., van Doorn, R., Desmet, C. J., Aarden, L. A., Mooi, W. J., and Peeper, D. S. (2008) Oncogene–induced senescence relayed by an interleukin–dependent inflammatory network, Cell, 133, 1019–1031.

    Article  CAS  PubMed  Google Scholar 

  117. Demaria, M., O’Leary, M. N., Chang, J., Shao, L., Liu, S., Alimirah, F., Koenig, K., Le, C., Mitin, N., Deal, A. M., Alston, S., Academia, E. C., Kilmarx, S., Valdovinos, A., Wang, B., de Bruin, A., Kennedy, B. K., Melov, S., Zhou, D., Sharpless, N. E., Muss, H., and Campisi, J. (2017) Cellular senescence promotes adverse effects of chemotherapy and cancer relapse, Cancer Discov., 7, 165–176.

    Article  CAS  PubMed  Google Scholar 

  118. Biran, A., Zada, L., Abou Karam, P., Vadai, E., Roitman, L., Ovadya, Y., Porat, Z., and Krizhanovsky, V. (2017) Quantitative identification of senescent cells in aging and disease, Aging Cell, 16, 661–671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Campisi, J. (2013) Aging, cellular senescence, and cancer, Annu. Rev. Physiol., 75, 685–705.

    Article  CAS  Google Scholar 

  120. Jaskelioff, M., Muller, F. L., Paik, J. H., Thomas, E., Jiang, S., Adams, A. C., Sahin, E., Kost–Alimova, M., Protopopov, A., Cadinanos, J., Horner, J. W., Maratos–Flier, E., and Depinho, R. A. (2011) Telomerase reactivation reverses tissue degeneration in aged telomerase–deficient mice, Nature, 469, 102–106.

    Article  CAS  PubMed  Google Scholar 

  121. Harley, C. B., Liu, W., Blasco, M., Vera, E., Andrews, W. H., Briggs, L. A., and Raffaele, J. M. (2011) A natural product telomerase activator as part of a health maintenance program, Rejuvenation Res., 14, 45–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Harley, C. B., Liu, W., Flom, P. L., and Raffaele, J. M. (2013) A natural product telomerase activator as part of a health maintenance program: metabolic and cardiovascular response, Rejuvenation Res., 16, 386–395.

    Article  CAS  PubMed  Google Scholar 

  123. Bernardes de Jesus, B., and Blasco, M. A. (2012) Potential of telomerase activation in extending health span and longevity, Curr. Opin. Cell Biol., 24, 739–743.

    Article  CAS  PubMed  Google Scholar 

  124. Lopez–Leon, M., and Goya, R. G. (2017) The emerging view of aging as a reversible epigenetic process, Gerontology, 63, 426–431.

    Article  CAS  PubMed  Google Scholar 

  125. Takahashi, K., and Yamanaka, S. (2013) Induced pluripotent stem cells in medicine and biology, Development, 140, 2457–2461.

    Article  CAS  PubMed  Google Scholar 

  126. De Lazaro, I., Yilmazer, A., and Kostarelos, K. (2014) Induced pluripotent stem (iPS) cells: a new source for cell–based therapeutics? J. Control. Release, 185, 37–44.

    Article  CAS  PubMed  Google Scholar 

  127. Tanabe, K., Takahashi, K., and Yamanaka, S. (2014) Induction of pluripotency by defined factors, Proc. Jpn. Acad. Ser. B Phys. Biol. Sci., 90, 83–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Takahashi, K., and Yamanaka, S. (2016) A decade of transcription factor–mediated reprogramming to pluripotency, Nat. Rev. Mol. Cell Biol., 17, 183–193.

    Article  CAS  PubMed  Google Scholar 

  129. Mendelsohn, A. R., Larrick, J. W., and Lei, J. L. (2017) Rejuvenation by partial reprogramming of the epigenome, Rejuvenation Res., 20, 146–150.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Libertini.

Additional information

Published in Russian in Biokhimiya, 2018, Vol. 83, No. 12, pp. 1812–1826.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Libertini, G., Ferrara, N., Rengo, G. et al. Elimination of Senescent Cells: Prospects According to the Subtelomere-Telomere Theory. Biochemistry Moscow 83, 1477–1488 (2018). https://doi.org/10.1134/S0006297918120064

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297918120064

Keywords

Navigation