Skip to main content
Log in

Genetic Association between Alzheimer’s Disease Risk Variant of the PICALM Gene and Auditory Event-Related Potentials in Aging

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Aging and genetic predisposition are major risk factors in age-related neurodegenerative disorders. The most common neurodegenerative disorder is Alzheimer’s disease (AD). Genome-wide association studies (GWAS) have identified statistically significant association of the PICALM rs3851179 polymorphism with AD. The PICALM G allele increases the risk of AD, while the A allele has a protective effect. We examined the association of the PICALM rs3851179 polymorphism with parameters of the P3 component of auditory event-related potentials (ERPs) in 87 non-demented volunteers (age, 19–77 years) subdivided into two cohorts younger and older than 50 years of age. We found statistically significant association between the AD risk variant PICALM GG and increase in the P3 latency in subjects over 50 years old. The age-dependent increase in the P3 latency was more pronounced in the PICALM GG carriers than in the carriers of the PICALM AA and PICALM AG genotypes. The observed PICALM-associated changes in the neurophysiological processes indicate a decline in the information processing speed with aging due, probably, to neuronal dysfunction and subclinical neurodegeneration of the neuronal networks in the hippocampus and the frontal and parietal cortical areas. Such changes were less pronounced in the carriers of the PICALM gene A allele, which might explain the protective effect of this allele in the cognitive decline and AD development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

EEG:

electroencephalogram

ERPs:

event-related potentials

LP:

latency period

PD:

Parkinson’s disease

References

  1. Sherrington, R., Rogaev, E. I., Liang, Y., Rogaeva, E. A., Levesque, G., Ikeda, M., Chi, H., Lin, C., Li, G., Holman, K., Tsuda, T., Mar, L., Foncin, J. F., Bruni, A. C., Montesi, M. P., Sorbi, S., Rainero, I., Pinessi, L., Nee, L., Chumakov, I., Pollen, D., Brookes, A., Sanseau, P., Polinsky, R. J., Wasco, W., Da Silva, H. A., Haines, J. L., Perkicak-Vance, M. A., Tanzi, R. E., Roses, A. D., Fraser, P. E., Rommens, J. M., and St. George-Hyslop, P. H. (1995) Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease, Nature, 375, 754–760.

    Article  PubMed  CAS  Google Scholar 

  2. Rogaev, E., Sherrington, R., Rogaeva, E., Levesque, G., Ikeda, M., Liang, Y., Chi, H., Lin, C., Holman, K., and Tsuda, T. (1995) Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene, Nature, 376, 775–778.

    Article  PubMed  CAS  Google Scholar 

  3. Levy-Lahad, E., Wasco, W., Poorkaj, P., Romano, D. M., Oshima, J., Pettingell, W. H., Yu, C. E., Jondro, P. D., Schmidt, S. D., Wang, K., Crowley, A. C., Fu, Y. F., Guenette, S. Y., Galas, D., Nemens, E., Wijsman, E. M., Bird, Th. D., Schellenberg, G. D., and Tanzi, R. E. (1995) Candidate gene for the chromosome 1 familial Alzheimer’s disease locus, Science, 269, 973–977.

    Article  PubMed  CAS  Google Scholar 

  4. Rogaev, E. I., Sherrington, R., Wu, C., Levesque, G., Liang, Y., Rogaeva, E. A., Ikeda, M., Holman, K., Lin, C., Lukiw, W. J., de Jong, P. J., Fraser, P. E., Rommens, J. M., and St. George-Hyslop, P. (1997) Analysis of the 5'-sequence, genomic structure, and alternative splicing of the presenilin-1 gene (PSEN1) associated with early onset Alzheimer disease, Genomics, 40, 415–424.

    Article  PubMed  CAS  Google Scholar 

  5. Goate, A., Chartier-Harlin, M. C., Mullan, M., Brown, J., Crawford, F., Fidani, L., Giuffra, L., Haynes, A., Irving, N., James, L., Mant, R., Newton, P., Rooke, K., Roques, P., Talbot, C., Pericak-Vance, M., Roses, A., Williamson, R., Rossor, M., Owen, M., and Hardy, J. (1991) Segregation of a missense mutation in the amyloid β-protein precursor gene with familial Alzheimer’s disease, Nature, 349, 704–706.

    Article  PubMed  CAS  Google Scholar 

  6. Saunders, A. M., Strittmatter, W. J., Schmechel, D., George-Hyslop, P. H., Pericak-Vance, M. A., Joo, S. H., Rosi, B. L., Gusella, J. F., Crapper-MacLachlan, D. R., and Alberts, M. J. (1993) Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease, Neurology, 43, 1467–1472.

    Article  PubMed  CAS  Google Scholar 

  7. Rogaev, E. I. (1999) Genetic factors and a polygenic model of Alzheimer’s disease, Genetika, 35, 1558–1571.

    PubMed  CAS  Google Scholar 

  8. Harold, D., Abraham, R., Hollingworth, P., Sims, R., Gerrish, A., Hamshere, M. L., Pahwa, J. S., Moskvina, V., Dowzell, K., Williams, A., Jones, N., Thomas, C., Stretton, A., Morgan, A. R., Lovestone, S., Powell, J., Proitsi, P., Lupton, M. K., Brayne, C., Rubinsztein, D. C., Gill, M., Lawlor, B., Lynch, A., Morgan, K., Brown, K. S., Passmore, P. A., Craig, D., McGuinness, B., Todd, S., Holmes, C., Mann, D., Smith, A. D., Love, S., Kehoe, P. G., Hardy, J., Mead, S., Fox, N., Rossor, M., Collinge, J., Maier, W., Jessen, F., Schurmann, B., Heun, R., van den Bussche, H., Heuser, I., Kornhuber, J., Wiltfang, J., Dichgans, M., Frolich, L., Hampel, H., Hull, M., Rujescu, D., Goate, A. M., Kauwe, J. S., Cruchaga, C., Nowotny, P., Morris, J. C., Mayo, K., Sleegers, K., Bettens, K., Engelborghs, S., De Deyn, P. P., Van Broeckhoven, C., Livingston, G., Bass, N. J., Gurling, H., McQuillin, A., Gwilliam, R., Deloukas, P., Al-Chalabi, A., Shaw, C. E., Tsolaki, M., Singleton, A. B., Guerreiro, R., Mühleisen, T. W., Nothen, M. M., Moebus, S., Jockel, K. H., Klopp, N., Wichmann, H. E., Carrasquillo, M. M., Pankratz, V. S., Younkin, S. G., Holmans, P. A., O’Donovan, M., Owen, M. J., and Williams, J. (2009) Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease, Nat. Genet., 41, 1088–1093.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Lambert, J.-C., Heath, S., Even, G., Campion, D., Sleegers, K., Hiltunen, M., Combarros, O., Zelenika, D., Bullido, M. J., Tavernier, B., Letenneur, L., Bettens, K., Berr, C., Pasquier, F., Fievet, N., Barberger-Gateau, P., Engelborghs, S., De Deyn, P., Mateo, I., Franck, A., Helisalmi, S., Porcellini, E., Hanon, O., de Pancorbo, M. M., Lendon, C., Dufouil, C., Jaillard, C., Leveillard, T., Alvarez, V., Bosco, P., Mancuso, M., Panza, F., Nacmias, B., Bossu, P., Piccardi, P., Annoni, G., Seripa, D., Galimberti, D., Hannequin, D., Licastro, F., Soininen, H., Ritchie, K., Blanche, H., Dartigues, J.-F., Tzourio, C., Gut, I., Van Broeckhoven, C., Alperovitch, A., Lathrop, M., and Amouyel, P. (2009) Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease, Nat. Genet., 41, 1094–1099.

    Article  PubMed  CAS  Google Scholar 

  10. Carrasquillo, M. M., Belbin, O., Hunter, T. A., Ma, L., Bisceglio, G. D., Zou, F., Crook, J. E., Pankratz, V. S., Dickson, D. W., Graff-Radford, N. R., Petersen, R. C., Morgan, K., and Younkin, S. G. (2010) Replication of CLU, CR1, and PICALM associations with Alzheimer’s disease, Arch. Neurol., 67, 961–964.

    PubMed  Google Scholar 

  11. Wang, Z., Lei, H., Zheng, M., Li, Y., Cui, Y., and Hao, F. (2016) Meta-analysis of the association between Alzheimer’s disease and variants in GAB2, PICALM, and SORL1, Mol. Neurobiol., 53, 6501–6510.

    Article  PubMed  CAS  Google Scholar 

  12. Golenkina, S. A., Gol’tsov, A. I., Kuznetsova, I. L., Grigorenko, A. P., Andreeva, T. V., Reshetov, D. A., Kunizheva, S. S., Shagam, L. I., Morozova, I. I., Goldenkova-Pavlova, I. V., Shimshilashvili, K., Viacheslavova, A. O., Faskhutdinova, G., Gareeva, A. E., Zainullina, A. G., Khusnutdinova, E. K., Puzyrev, V. P., Stepanov, V. A., Kolotvin, A. V., Samokhodskaia, L. M., Selezneva, N. D., Gavrilova, S. I., and Rogaev, E. I. (2010) Analysis of clusterin gene (CLU/APOJ) polymorphism in Alzheimer’s disease patients and in normal cohorts from Russian populations, Mol. Biol. (Moscow), 44, 620–620.

    Article  CAS  Google Scholar 

  13. Naj, A. C., Jun, G., Reitz, C., Kunkle, B. W., Perry, W., Park, Y. S., Beecham, G. W., Rajbhandary, R. A., Hamilton-Nelson, K. L., Wang, L. S., Kauwe, J. S., Huentelman, M. J., Myers, A. J., Bird, T. D., Boeve, B. F., Baldwin, C. T., Jarvik, G. P., Crane, P. K., Rogaeva, E., Barmada, M. M., Demirci, F. Y., Cruchaga, C., Kramer, P., Alzheimer’s Disease Genetics Consortium, Ertekin-Taner, N., Hardy, J., Graff-Radford, N. R., Green, R. C., Larson, E. B., St. George-Hyslop, P., Buxbaum, J. D., Evans, D., Schneider, J. A., Lunetta, K. L., Kamboh, M. I., Saykin, A. J., Reiman, E. M., De Jager, P. L., Bennett, D. A., Morris, J. C., Montine, T. J., Goate, A. M., Blacker, D., Tsuang, D. W., Hakonarson, H., Kukull, W. A., Foroud, T. M., Martin, E. R., Haines, J. L., Mayeux, R., Farrer, L. A., Schellenberg, G. D., and Pericak-Vance, M. A. (2014) Age-at-onset in late onset Alzheimer disease is modified by multiple genetic loci, JAMA Neurol., 71, 1394–1404.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Xu, W., Tan, L., and Yu, J.-T. (2015) The role of PICALM in Alzheimer’s disease, Mol. Neurobiol., 52, 399–413.

    Article  PubMed  CAS  Google Scholar 

  15. Xiao, Q., Gil, S. C., Yan, P., Wang, Y., Han, S., Gonzales, E., Perez, R., Cirrito, J. R., and Lee, J. M. (2012) Role of phosphatidylinositol clathrin assembly lymphoid-myeloid leukemia (PICALM) in intracellular amyloid precursor protein (APP) processing and amyloid plaque pathogenesis, J. Biol. Chem., 287, 21279–21289.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Ando, K., Brion, J. P., Stygelbout, V., Suain, V., Authelet, M., Dedecker, R., Chanut, A., Lacor, P., Lavaur, J., Sazdovitch, V., Rogaeva, E., Potier, M. C., and Duyckaerts, C. (2013) Clathrin adaptor CALM/PICALM is associated with neurofibrillary tangles and is cleaved in Alzheimer’s brains, Acta Neuropathol., 125, 861–878.

    Article  PubMed  CAS  Google Scholar 

  17. Moreau, K., Fleming, A., Imarisio, S., Lopez Ramirez, A., Mercer, J. L., Jimenez-Sanchez, M., Bento, C. F., Puri, C., Zavodszky, E., Siddiqi, F., Lavau, C. P., Betton, M., O’Kane, C. J., Wechsler, D. S., and Rubinsztein, D. C. (2014) PICALM modulates autophagy activity and tau accumulation, Nat. Commun., 5, 4998.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Harel, A., Mattson, M. P., and Yao, P. J. (2011) CALM, a clathrin assembly protein, influences cell surface GluR2 abundance, Neuromolec. Med., 13, 88–90.

    Article  CAS  Google Scholar 

  19. Parikh, I., Fardo, D. W., and Estus, S. (2014) Genetics of PICALM expression and Alzheimer’s disease, PLoS One, 9, e91242.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Biffi, A., Anderson, C. D., Desikan, R. S., Sabuncu, M., Cortellini, L., Schmansky, N., Salat, D., and Rosand, J. (2010) Genetic variation and neuroimaging measures in Alzheimer’s disease, Arch. Neurol., 67, 677–685.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Furney, S. J., Simmons, A., Breen, G., Pedroso, I., Lunnon, K., Proitsi, P., Hodges, A., Powell, J., Wahlund, L.-O., Kloszewska, I., Mecocci, P., Soininen, H., Tsolaki, M., Vellas, B., Spenger, C., Lathrop, M., Shen, L., Kim, S., Saykin, A. J., Weiner, M. W., and Lovestone, S. (2011) Genome-wide association with MRI atrophy measures as a quantitative trait locus for Alzheimer’s disease, Mol. Psychiatry, 16, 1130–1138.

    Article  PubMed  CAS  Google Scholar 

  22. Ponomareva, N. V., Andreeva, T. V., Protasova, M. S., Shagam, L. I., Malina, D. D., Goltsov, A. Y., Fokin, V. F., Illarioshkin, S. N., and Rogaev, E. I. (2017) Quantitative EEG during normal aging: association with the Alzheimer’s disease genetic risk variant in PICALM gene, Neurobiol. Aging, 51, e1–e8.

    Article  CAS  Google Scholar 

  23. Gnezditskiy, V. V. (1997) Cerebral Event-Related Potentials in Clinical Practice [in Russian], TGRU.

    Google Scholar 

  24. Zenkov, L. R., and Ronkin, M. A. (2013) Functional Diagnostics of Nervous System Diseases. Manual for Physicians [in Russian], MEDpress-inform.

    Google Scholar 

  25. Romanov, A. S., Sharova, E. V., Kuznetsova, O. A., Oknin, L. V., Volynskiy, P. E., and Shchekut’ev, G. A. (2011) An opportunity for using wavelet synchronization in assessment of long-latency components of auditory evoked potentials in healthy humans, Zh. Vysshei Nerv. Deyat. im. I. P. Pavlova, 61, 112–118.

    CAS  Google Scholar 

  26. Polich, J. (2007) Updating P300: an integrative theory of P3a and P3b, Clin. Neurophysiol., 118, 2128–2148.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Joos, K., Gilles, A., Van de Heyning, P., De Ridder, D., and Vanneste, S. (2014) From sensation to percept: the neural signature of auditory event-related potentials, Neurosci. Biobehav. Rev., 42, 148–156.

    Article  PubMed  Google Scholar 

  28. Kropotov, J., Ponomarev, V., Tereshchenko, E. P., Muller, A., and Jancke, L. (2016) Effect of aging on ERP components of cognitive control, Front. Aging Neurosci., 8,69.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lister, J. J., Harrison Bush, A. L., Andel, R., Matthews, C., Morgan, D., and Edwards, J. D. (2016) Cortical auditory evoked responses of older adults with and without probable mild cognitive impairment, Clin. Neurophysiol., 127, 1279–1287.

    Article  PubMed  Google Scholar 

  30. Goodin, D. S., Squires, K. C., and Starr, A. (1978) Long latency event-related components of the auditory evoked potential in dementia, Brain, 101, 635–648.

    Article  PubMed  CAS  Google Scholar 

  31. Braverman, E. R., Blum, K., Hussman, K. L., Han, D., Dushaj, K., Li, M., Marin, G., Badgaiyan, R. D., Smayda, R., and Gold, M. S. (2015) Evoked potentials and memory/cognition tests validate brain atrophy as measured by 3T MRI (NeuroQuant) in cognitively impaired patients, PLoS One, 10, e0133609.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Irimajiri, R., Golob, E. J., and Starr, A. (2010) ApoE genotype and abnormal auditory cortical potentials in healthy older females, Neurobiol. Aging, 31, 1799–1804.

    Article  PubMed  CAS  Google Scholar 

  33. Green, J., and Levey, A. I. (1999) Event-related potential changes in groups at increased risk for Alzheimer’s disease, Arch. Neurol., 56, 1398–1403.

    Article  PubMed  CAS  Google Scholar 

  34. Ponomareva, N. V., Fokin, V. F., Selesneva, N. D., and Voskresenskaia, N. I. (1998) Possible neurophysiological markers of genetic predisposition to Alzheimer’s disease, Dement. Geriatr. Cogn. Disord., 9, 267–273.

    Article  PubMed  CAS  Google Scholar 

  35. Hardy, J., and Selkoe, D. J. (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics, Science, 297, 353–356.

    Article  PubMed  CAS  Google Scholar 

  36. Santos-Reboucas, C. B., Goncalves, A. P., Dos Santos, J. M., Abdala, B. B., Motta, L. B., Laks, J., de Borges, M. B., de Rosso, A. L. Z., Pereira, J. S., Nicaretta, D. H., and Pimentel, M. M. G. (2017) rs3851179 Polymorphism at 5' to the PICALM gene is associated with Alzheimer’s and Parkinson’s diseases in Brazilian population, Neuromolec. Med., 19, 293–299.

    Article  CAS  Google Scholar 

  37. Kalinderi, K., Bostantjopoulou, S., Katsarou, Z., Clarimon, J., and Fidani, L. (2012) Lack of association of the PICALM rs3851179 polymorphism with Parkinson’s disease in the Greek population, Int. J. Neurosci., 122, 502–605.

    Article  PubMed  CAS  Google Scholar 

  38. Cheng, F., Li, X., Li, Y., Wang, C., Wang, T., Liu, G., Baskys, A., Ueda, K., Chan, P., and Yu, S. (2011) a-Synuclein promotes clathrin-mediated NMDA receptor endocytosis and attenuates NMDA-induced dopaminergic cell death, J. Neurochem., 119, 815–825.

    Article  PubMed  CAS  Google Scholar 

  39. Nojszewska, M., Pilczuk, B., Zakrzewska-Pniewska, B., and Rowinska-Marcinska, K. (2009) The auditory system involvement in Parkinson disease: electrophysiological and neuropsychological correlations, J. Clin. Neurophysiol., 26, 430–437.

    Article  PubMed  Google Scholar 

  40. Illarioshkin, S. N., and Ivanova-Smolenskaya, I. A. (2011) Trembling Hyperkinesis [in Russian], Atmosfera, Moscow.

    Google Scholar 

  41. Illarioshkin, S. N., Ivanova-Smolenskaia, I. A., Markova, E. D., Shadrina, M. I., Kliushnikov, S. A., Zagorovskaia, T. V., Miklina, N. I., Slominskii, P. A., and Limborskaia, S. A. (2004) Molecular genetic analysis of hereditary neurodegenerative diseases, Genetika, 40, 816–826.

    PubMed  CAS  Google Scholar 

  42. Ponomareva, N. V., Goltsov, A. Y., Kunijeva, S. S., Scheglova, N. S., Malina, D. D., Mitrofanov, A. A., Boikova, T. I., and Rogaev, E. I. (2012) Age-and genotype-related neurophysiologic reactivity to oxidative stress in healthy adults, Neurobiol. Aging, 33, 839.e11–21.

    Article  PubMed  CAS  Google Scholar 

  43. Ponomareva, N., Andreeva, T., Protasova, M., Shagam, L., Malina, D., Goltsov, A., Fokin, V., Mitrofanov, A., and Rogaev, E. (2013) Age-dependent effect of Alzheimer’s risk variant of CLU on EEG alpha rhythm in non-demented adults, Front. Aging Neurosci., 5,86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Fokin, V. F., and Ponomareva, N. V. (2003) Neuronergetics and Brain physiology [in Russian], Antidor, Moscow.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. V. Ponomareva or E. I. Rogaev.

Additional information

Original Russian Text © N. V. Ponomareva, T. V. Andreeva, M. A. Protasova, Yu. V. Filippova, E. P. Kolesnikova, V. F. Fokin, S. N. Illarioshkin, E. I. Rogaev, 2018, published in Biokhimiya, 2018, Vol. 83, No. 9, pp. 1351–1360.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponomareva, N.V., Andreeva, T.V., Protasova, M.A. et al. Genetic Association between Alzheimer’s Disease Risk Variant of the PICALM Gene and Auditory Event-Related Potentials in Aging. Biochemistry Moscow 83, 1075–1082 (2018). https://doi.org/10.1134/S0006297918090092

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297918090092

Keywords

Navigation