Skip to main content
Log in

Who Needs This Junk, or Genomic Dark Matter

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Centromeres (CEN), pericentromeric regions (periCEN), and subtelomeric regions (subTel) comprise the areas of constitutive heterochromatin (HChr). Tandem repeats (TRs or satellite DNA) are the main components of HChr forming no less than 10% of the mouse and human genome. HChr is assembled within distinct structures in the interphase nuclei of many species–chromocenters. In this review, the main classes of HChr repeat sequences are considered in the order of their number increase in the sequencing reads of the mouse chromocenters (ChrmC). TRs comprise ~70% of ChrmC occupying the first place. Non-LTR (-long terminal repeat) retroposons (mainly LINE, long interspersed nuclear element) are the next (~11%), and endogenous retroviruses (ERV; LTR-containing) are in the third position (~9%). HChr is not enriched with ERV in comparison with the whole genome, but there are differences in distribution of certain elements: while MaLR-like elements (ERV3) are dominant in the whole genome, intracisternal A-particles and corresponding LTR (ERV2) are prevalent in HChr. Most of LINE in ChrmC is represented by the 2-kb fragment at the end of the 2nd open reading frame and its flanking regions. Almost all tandem repeats classified as CEN or periCEN are contained in ChrmC. Our previous classification revealed 60 new mouse TR families with 29 of them being absent in ChrmC, which indicates their location on chromosome arms. TR transcription is necessary for maintenance of heterochromatic status of the HChr genome part. A burst of TR transcription is especially important in embryogenesis and other cases of radical changes in the cell program, including carcinogenesis. The recently discovered mechanism of epigenetic regulation with noncoding sequences transcripts, long noncoding RNA, and its role in embryogenesis and pluripotency maintenance is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CEN:

centromeres

CENP-B box:

CEN-binding site of CENP-B protein

ChrmC:

dataset of sequence reads from mouse chromocenters

eDNA:

extracellular DNA

ERV:

endogenous retrovirus

FISH:

fluorescent in situ hybridization

GPG:

golden path gap (unfilled gap in assembled genomes with size of 3 Mb reserved for CEN)

HAC:

human artificial chromosome

HChr:

heterochromatin

HOR:

high order repeat

HP1:

heterochromatic protein 1

HS1-3:

human satellites 1–3

HSF-1:

heat shock factor-1 (transcription factor)

IAPs:

intracisternal A-particles

LINE:

long interspersed nuclear element

lncRNA:

long non-coding RNA

LTR:

long terminal repeats in ERV

MaSat:

mouse major satellite (periCEN)

MiSat:

mouse minor satellite (CEN)

periCEN:

pericentromeric regions

satDNA:

satellite DNA

SINE:

short interspersed nuclear element

subTel:

subtelomeric region

TE:

transposable elements

TR:

tandem repeats

WGS:

Whole Genome Shotgun (dataset of reads assembled to genome contigs).

References

  1. Koryakov, D. E., and Zhimulev, I. F. (2009) Chromosomes. Structure and Functions [in Russian], SO RAN Publishers, Novosibirsk.

    Google Scholar 

  2. Wijchers, P. J., Geeven, G., Eyres, M., Bergsma, A. J., Janssen, M., Verstegen, M., Zhu, Y., Schell, Y., Vermeulen, C., De Wit, E., and De Laat, W. (2015) Characterization and dynamics of pericentromere-associated domains in mice, Genome Res., 25, 958–969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Guenatri, M., Bailly, D., Maison, C., and Almouzni, G. (2004) Mouse centric and pericentric satellite repeats form distinct functional heterochromatin, J. Cell Biol., 166, 493–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Snapp, R. R., Goveia, E., Peet, L., Bouffard, N. A., Badger, G. J., and Langevin, H. M. (2013) Spatial organization of fibroblast nuclear chromocenters: component tree analysis, J. Anat., 223, 255–261.

    Article  PubMed  PubMed Central  Google Scholar 

  5. De Koning, A. J., Gu, W., Castoe, T. A., Batzer, M. A., and Pollock, D. D. (2011) Repetitive elements may comprise over two-thirds of the human genome, PLoS Genet., 7, e1002384.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Probst, A. V., Okamoto, I., Casanova, M., Marjou, F., Le Baccon, P., and Almouzni, G. (2010) A strand-specific burst in transcription of pericentric satellites is required for chromocenter formation and early mouse development, Dev. Cell, 19, 625–638.

    Article  CAS  PubMed  Google Scholar 

  7. Casanova, M., Pasternak, M., El Marjou, F., Le Baccon, P., Probst, A. V., and Almouzni, G. (2013) Heterochromatin reorganization during early mouse development requires a single-stranded noncoding transcript, Cell Rep., 4, 1156–1167.

    Article  CAS  PubMed  Google Scholar 

  8. Zhu, Q., Pao, G. M., Huynh, A. M., Suh, H., Tonnu, N., Nederlof, P. M., and Verma, I. M. (2011) BRCA1 tumour suppression occurs via heterochromatin-mediated silencing, Nature, 477, 179–184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Alexiadis, V., Ballestas, M. E., Sanchez, C., Winokur, S., Vedanarayanan, V., Warren, M., and Ehrlich, M. (2007) RNAPol-ChIP analysis of transcription from FSHD-linked tandem repeats and satellite DNA, Biochim. Biophys. Acta, 1769, 29–40.

    Article  CAS  PubMed  Google Scholar 

  10. Elgin, S. C., and Reuter, G. (2013) Position-effect variegation, heterochromatin formation, and gene silencing in Drosophila, Cold Spring Harb. Perspect. Biol., 5, a01778.

    Article  CAS  Google Scholar 

  11. Shatskikh, A. S., and Gvozdev, V. A. (2013) Heterochromatin formation and transcription in relation to trans-inactivation of genes and their spatial organization in the nucleus, Biochemistry (Moscow), 78, 603–612.

    Article  CAS  Google Scholar 

  12. Mayer, R., Brero, A., Von Hase, J., Schroeder, T., Cremer, T., and Dietzel, S. (2005) Common themes and cell type specific variations of higher order chromatin arrangements in the mouse, BMC Cell. Biol., 6, 44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Probst, A. V., and Almouzni, G. (2008) Pericentric heterochromatin: dynamic organization during early development in mammals, Differentiation, 76, 15–23.

    Article  CAS  PubMed  Google Scholar 

  14. Prusov, A. N., and Zatsepina, O. V. (2002) Isolation of the chromocenter fraction from mouse liver nuclei, Biochemistry (Moscow), 67, 423–431.

    Article  CAS  Google Scholar 

  15. Zatsepina, O. V., Zharskaya, O. O., and Prusov, A. N. (2008) Isolation of the constitutive heterochromatin from mouse liver nuclei, in The Nucleus. Vol. 1: Nuclei and Subnuclear Components, Springer, pp. 169–180.

    Chapter  Google Scholar 

  16. Hutchins, A. P., and Pei, D. (2015) Transposable elements at the center of the crossroads between embryogenesis, embryonic stem cells, reprogramming, and long non-coding RNAs, Sci. Bull., 60, 1722–1733.

    CAS  Google Scholar 

  17. Ostromyshenskii, D. I., Chernyaeva, E. N., Kuznetsova, I. S., and Podgornaya, O. I. (2018) Mouse chromocenters DNA content: sequencing and in silico analysis, BMC Genomics, 19, 151.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Van der Kuyl, A. C. (2012) HIV infection and HERV expression: a review, Retrovirology, 9, 6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Wicker, T., Sabot, F., Hua-Van, A., Bennetzen, J. L., Capy, P., Chalhoub, B., and Paux, E. (2007) A unified classification system for eukaryotic transposable elements, Nat. Rev. Genet., 8, 973–982.

    Article  CAS  PubMed  Google Scholar 

  20. Mouse Genome Sequencing Consortium; Waterston, R. H., Lindblad-Toh, K., Birney, E., Rogers, J., Abril, J. F., Agarwal, P., Agarwala, R., Ainscough, R., Alexandersson, M., An, P., Antonarakis, S. E., Attwood, J., Baertsch, R., Bailey, J., Barlow, K., Beck, S., Berry, E., Birren, B., Bloom, T., Bork, P., Botcherby, M., Bray, N., Brent, M. R., Brown, D. G., Brown, S. D., Bult, C., Burton, J., Butler, J., Campbell, R. D., Carninci, P., Cawley, S., Chiaromonte, F., Chinwalla, A. T., Church, D. M., Clamp, M., Clee, C., Collins, F. S., Cook, L. L., Copley, R. R., Coulson, A., Couronne, O., Cuff, J., Curwen, V., Cutts, T., Daly, M., David, R., Davies, J., Delehaunty, K. D., Deri, J., Dermitzakis, E. T., Dewey, C., Dickens, N. J., Diekhans, M., Dodge, S., Dubchak, I., Dunn, D. M., Eddy, S. R., Elnitski, L., Emes, R. D., Eswara, P., Eyras, E., Felsenfeld, A., Fewell, G. A., Flicek, P., Foley, K., Frankel, W. N., Fulton, L. A., Fulton, R. S., Furey, T. S., Gage, D., Gibbs, R. A., Glusman, G., Gnerre, S., Goldman, N., Goodstadt, L., Grafham, D., Graves, T. A., Green, E. D., Gregory, S., Guigo, R., Guyer, M., Hardison, R. C., Haussler, D., Hayashizaki, Y., Hillier, L. W., Hinrichs, A., Hlavina, W., Holzer, T., Hsu, F., Hua, A., Hubbard, T., Hunt, A., Jackson, I., Jaffe, D. B., Johnson, L. S., Jones, M., Jones, T. A., Joy, A., Kamal, M., Karlsson, E. K., Karolchik, D., Kasprzyk, A., Kawai, J., Keibler, E., Kells, C., Kent, W. J., Kirby, A., Kolbe, D. L., Korf, I., Kucherlapati, R. S., Kulbokas, E. J., Kulp, D., Landers, T., Leger, J. P., Leonard, S., Letunic, I., Levine, R., Li, J., Li, M., Lloyd, C., Lucas, S., Ma, B., Maglott, D. R., Mardis, E. R., Matthews, L., Mauceli, E., Mayer, J. H., McCarthy, M., McCombie, W. R., McLaren, S., McLay, K., McPherson, J. D., Meldrim, J., Meredith, B., Mesirov, J. P., Miller, W., Miner, T. L., Mongin, E., Montgomery, K. T., Morgan, M., Mott, R., Mullikin, J. C., Muzny, D. M., Nash, W. E., Nelson, J. O., Nhan, M. N., Nicol, R., Ning, Z., Nusbaum, C., O’Connor, M. J., Okazaki, Y., Oliver, K., Overton-Larty, E., Pachter, L., Parra, G., Pepin, K. H., Peterson, J., Pevzner, P., Plumb, R., Pohl, C. S., Poliakov, A., Ponce, T. C., Ponting, C. P., Potter, S., Quail, M., Reymond, A., Roe, B. A., Roskin, K. M., Rubin, E. M., Rust, A. G., Santos, R., Sapojnikov, V., Schultz, B., Schultz, J., Schwartz, M. S., Schwartz, S., Scott, C., Seaman, S., Searle, S., Sharpe, T., Sheridan, A., Shownkeen, R., Sims, S., Singer, J. B., Slater, G., Smit, A., Smith, D. R., Spencer, B., Stabenau, A., Stange-Thomann, N., Sugnet, C., Suyama, M., Tesler, G., Thompson, J., Torrents, D., Trevaskis, E., Tromp, J., Ucla, C., Ureta-Vidal, A., Vinson, J. P., Von Niederhausern, A. C., Wade, C. M., Wall, M., Weber, R. J., Weiss, R. B., Wendl, M. C., West, A. P., Wetterstrand, K., Wheeler, R., Whelan, S., Wierzbowski, J., Willey, D., Williams, S., Wilson, R. K., Winter, E., Worley, K. C., Wyman, D., Yang, S., Yang, S. P., Zdobnov, E. M., Zody, M. C., and Lander, E. S. (2002) Initial sequencing and comparative analysis of the mouse genome, Nature, 420, 520–562.

    Article  CAS  Google Scholar 

  21. Komissarov, A. S., Gavrilova, E. V., Demin, S. J., Ishov, A. M., and Podgornaya, O. I. (2011) Tandemly repeated DNA families in the mouse genome, BMC Genomics, 12, 531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dunn, C. A., Romanish, M. T., Gutierrez, L. E., Van de Lagemaat, L. N., and Mager, D. L. (2006) Transcription of two human genes from a bidirectional endogenous retrovirus promoter, Gene, 366, 335–342.

    Article  CAS  PubMed  Google Scholar 

  23. Carone, D. M., Longo, M. S., Ferreri, G. C., Hall, L., Harris, M., Shook, N., and O’Neill, R. J. (2009) A new class of retroviral and satellite encoded small RNAs emanates from mammalian centromeres, Chromosoma, 118, 113–125.

    Article  CAS  PubMed  Google Scholar 

  24. Longo, M. S., Carone, D. M., Green, E. D., O’Neill, M. J., and O’Neill, R. J. (2009) Distinct retroelement classes define evolutionary breakpoints demarcating sites of evolutionary novelty, BMC Genomics, 10, 334.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Ruiz-Herrera, A., Farre, M., and Robinson, T. J. (2012) Molecular cytogenetic and genomic insights into chromosomal evolution, Heredity, 108, 28–36.

    Article  CAS  PubMed  Google Scholar 

  26. Ferreri, G. C., Brown, J. D., Obergfell, C., Jue, N., Finn, C. E., O’Neill, M. J., and O’Neill, R. J. (2011) Recent amplification of the kangaroo endogenous retrovirus, KERV, limited to the centromere, J. Virol., 85, 4761–4771.

    CAS  PubMed  Google Scholar 

  27. Brattas, P. L., Jonsson, M. E., Fasching, L., Wahlestedt, J. N., Shahsavani, M., Falk, R., and Jakobsson, J. (2017) TRIM28 controls a gene regulatory network based on endogenous retroviruses in human neural progenitor cells, Cell Rep., 18, 1–11.

    Article  PubMed  CAS  Google Scholar 

  28. Chuong, E. B., Rumi, M. K., Soares, M. J., and Baker, J. C. (2013) Endogenous retroviruses function as species-specific enhancer elements in the placenta, Nat. Genet., 45, 325–329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lynch, V. J., Nnamani, M. C., Kapusta, A., Brayer, K., Plaza, S. L., Mazur, E. C., and Graf, A. (2015) Ancient transposable elements transformed the uterine regulatory landscape and transcriptome during the evolution of mammalian pregnancy, Cell Rep., 10, 551–561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Roberts, R. M., Green, J. A., and Schulz, L. C. (2016) The evolution of the placenta, Reproduction, 152, 179–189.

    Article  Google Scholar 

  31. Imakawa, K., and Nakagawa, S. (2017) The phylogeny of placental evolution through dynamic integrations of retrotransposons, Prog. Mol. Biol. Transl. Sci., 145, 89–109.

    Article  CAS  PubMed  Google Scholar 

  32. Mager, D. L., and Stoye, J. P. (2015) Mammalian endogenous retroviruses, Microbiol. Spectrum, 3, No. 1, MDNA3-0009-2014; doi: 10.1128/microbiolspec.MDNA3-0009-2014.

    Google Scholar 

  33. Lu, X., Sachs, F., Ramsay, L., Jacques, P. E., Goke, J., Bourque, G., and Ngoh, H. (2014) The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity, Nat. Struct. Mol. Biol., 21, 423–425.

    Article  CAS  PubMed  Google Scholar 

  34. Goke, J., Lu, X., Chan, Y. S., Ng, H. H., Ly, L. H., Sachs, F., and Szczerbinska, I. (2015) Dynamic transcription of distinct classes of endogenous retroviral elements marks specific populations of early human embryonic cells, Cell Stem Cell, 16, 135–141.

    Article  CAS  PubMed  Google Scholar 

  35. Schoorlemmer, J., Perez-Palacios, R., Climent, M., Guallar, D., and Muniesa, P. (2014) Regulation of mouse retroelement MuERV-L/MERVL expression by REX1 and epigenetic control of stem cell potency, Front. Oncol., doi: 10.3389/fonc.2014.00014.

    Google Scholar 

  36. Robbez-Masson, L., and Rowe, H. M. (2015) Retrotransposons shape species-specific embryonic stem cell gene expression, Retrovirology, 12, 45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Crichton, J. H., Dunican, D. S., MacLennan, M., Meehan, R. R., and Adams, I. R. (2014) Defending the genome from the enemy within: mechanisms of retrotransposon suppression in the mouse germline, Cell. Mol. Life Sci., 71, 1581–1605.

    Article  CAS  PubMed  Google Scholar 

  38. Gerdes, P., Richardson, S. R., Mager, D. L., and Faulkner, G. J. (2016) Transposable elements in the mammalian embryo: pioneers surviving through stealth and service, Genome Biol., 17, 100.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Wong, C., Chen, A. A., Behr, B., and Shen, S. (2013) Time-lapse microscopy and image analysis in basic and clinical embryo development research, Reprod. Biomed. Online, 26, 120–129.

    Article  CAS  PubMed  Google Scholar 

  40. Grow, E. J., Flynn, R. A., Chavez, S. L., Bayless, N. L., Wossidlo, M., Wesche, D. J., and Pera, R. A. R. (2015) Intrinsic retroviral reactivation in human preimplantation embryos and pluripotent cells, Nature, 522, 221–225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Boyle, A. L., Ballard, S. G., and Ward, D. C. (1990) Differential distribution of long and short interspersed element sequences in the mouse genome: chromosome karyotyping by fluorescence in situ hybridization, Proc. Natl. Acad. Sci. USA, 87, 7757–7761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Waterston, R. H., Lander, E. S., and Sulston, J. E. (2002) On the sequencing of the human genome, Proc. Natl. Acad. Sci. USA, 99, 3712–3716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Solovei, I., Kreysing, M., Lanctot, C., Kosem, S., Peichl, L., Cremer, T., and Joffe, B. (2009) Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution, Cell, 137, 356–368.

    Article  CAS  PubMed  Google Scholar 

  44. Podgornaya, O., Gavrilova, E., Stephanova, V., Demin, S., and Komissarov, A. (2013) Large tandem repeats make up the chromosome bar code: a hypothesis, Adv. Protein Chem. Struct. Biol., 90, 1–30.

    Article  CAS  PubMed  Google Scholar 

  45. Miga, K. H. (2015) Completing the human genome: the progress and challenge of satellite DNA assembly, Chromosome Res., 23, 421–426.

    Article  CAS  PubMed  Google Scholar 

  46. Kuznetsova, I. S., Ostromyshenskii, D. I., Komissarov, A. S., Prusov, A. N., Waisertreiger, I. S., Gorbunova, A. V., Trifonov, V. A., Ferguson-Smith, M., and Podgornaya, O. I. (2016) LINE-related component of mouse heterochromatin and complex chromocenters’ composition, Chromosome Res., 24, 309–323.

    Article  CAS  PubMed  Google Scholar 

  47. Ostromyshenskii, D. I., Komissarov, A. S., Kuznetsova, I. S., Chernyaeva, E. N., Vaysertreyger, I. R., and Podgornaya, O. I. (2016) The structure of DNA chromocentres in mouse in silico and in situ. LINE and ERV fragments are an obligatory components of DNA chromocentres besides tandem repeats, Tsitologiya, 58, 389–392.

    Google Scholar 

  48. Van de Werken, H. J. G., De Haan, J. C., Feodorova, Y., Bijos, D., Weuts, A., Theunis, K., and Kumar, P. (2017) Small chromosomal regions position themselves autonomously according to their chromatin class, Genome Res., 27, 922–933.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Choo, K. H. (1997) Centromeres, John Wiley & Sons, Ltd.

    Google Scholar 

  50. Fadloun, A., Le Gras, S., Jost, B., Ziegler-Birling, C., Takahashi, H., Gorab, E., and Torres-Padilla, M. E. (2013) Chromatin signatures and retrotransposon profiling in mouse embryos reveal regulation of LINE-1 by RNA, Nat. Struct. Mol. Biol., 20, 332–338.

    Article  CAS  PubMed  Google Scholar 

  51. Hall, L. L., Carone, D. M., Gomez, A. V., Kolpa, H. J., Byron, M., Mehta, N., and Lawrence, J. B. (2014) Stable C0 T-1 repeat RNA is abundant and is associated with euchromatic interphase chromosomes, Cell, 156, 907–919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kit, S. (1961) Equilibrium sedimentation in density gradients of DNA preparations from animal tissues, J. Mol. Biol., 3, 711–716.

    Article  CAS  PubMed  Google Scholar 

  53. Vogt, P. (1990) Potential genetic functions of tandem repeated DNA sequence blocks in the human genome are based on a highly conserved “chromatin folding code”, Hum. Genet., 84, 301–336.

    CAS  PubMed  Google Scholar 

  54. Pavlek, M., Gelfand, Y., Plohl, M., and Mestrovic, N. (2015) Genome-wide analysis of tandem repeats in Tribolium castaneum genome reveals abundant and highly dynamic tandem repeat families with satellite DNA features in euchromatic chromosomal arms, DNA Res., 22, 387–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wevrick, R., and Willard, H. F. (1991) Physical map of the centromeric region of human chromosome 7: relationship between two distinct alpha satellite arrays, Nucleic Acids Res., 19, 2295–2301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ikeno, M., Masumoto, H., and Okazaki, T. (1994) Distribution of CENP-B boxes reflected in CREST centromere antigenic sites on long-range α-satellite DNA arrays of human chromosome 21, Hum. Mol. Genetics, 3, 1245–1257.

    Article  CAS  Google Scholar 

  57. He, D., Zeng, C., Woods, K., Zhong, L., Turner, D., Busch, R. K., and Busch, H. (1998) CENP-G: a new centromeric protein that is associated with the α-1 satellite DNA subfamily, Chromosoma, 107, 189–197.

    Article  CAS  PubMed  Google Scholar 

  58. Miheev, D. Yu., Podgornaya, O. I., and Ostromyshenskii, D. I. (2015) Large tandem repeats of Mesocricetus auratus in silico and in situ, Tsitologiya, 57, 95–101.

    Google Scholar 

  59. Ostromyshenskii, D. I., Kuznetsova, I. S., Komissarov, A. S., Kartavtseva, I. V., and Podgornaya, O. I. (2015) Tandem repeats in rodents genome and their mapping, Tsitologiya, 57, 102–110.

    CAS  Google Scholar 

  60. Ames, D., Murphy, N., Helentjaris, T., Sun, N., and Chandler, V. (2008) Comparative analyses of human single-and multilocus tandem repeats, Genetics, 179, 1693–1704.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Warburton, P. E., Hasson, D., Guillem, F., Lescale, C., Jin, X., and Abrusan, G. (2008) Analysis of the largest tandemly repeated DNA families in the human genome, BMC Genomics, 9, 533.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Alkan, C., Cardone, M. F., Catacchio, C. R., Antonacci, F., O’Brien, S. J., Ryder, O., and Ventura, M. (2011) Genome-wide characterization of centromeric satellites from multiple mammalian genomes, Genome Res., 21, 137–145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Capy, P. (2005) Classification and nomenclature of retrotransposable elements, Cytogenet. Genome Res., 110, 457–461.

    Article  CAS  PubMed  Google Scholar 

  64. Kronmiller, B. A., and Wise, R. P. (2008) Tenest: automated chronological annotation and visualization of nested plant transposable elements, Plant Physiol., 146, 45–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Feschotte, C., Keswani, U., Ranganathan, N., Guibotsy, M. L., and Levine, D. (2009) Exploring repetitive DNA landscapes using REPCLASS, a tool that automates the classification of transposable elements in eukaryotic genomes, Genome Biol. Evol., 1, 205–220.

    PubMed  Google Scholar 

  66. Seberg, O., and Petersen, G. (2009) A unified classification system for eukaryotic transposable elements should reflect their phylogeny, Nat. Rev. Genet., 10, 276–276.

    Article  CAS  PubMed  Google Scholar 

  67. Vassetzky, N. S., and Kramerov, D. A. (2012) SINEBase: a database and tool for SINE analysis, Nucleic Acids Res., 41, 83–89.

    Article  CAS  Google Scholar 

  68. Gelfand, Y., Rodriguez, A., and Benson, G. (2006) TRDB–the tandem repeats database, Nucleic Acids Res., 35, 80–87.

    Article  Google Scholar 

  69. Jurka, J., Kapitonov, V. V., Pavlicek, A., Klonowski, P., Kohany, O., and Walichiewicz, J. (2005) Repbase Update, a database of eukaryotic repetitive elements, Cytogenet. Genome Res., 110, 462–467.

    Article  CAS  PubMed  Google Scholar 

  70. Melters, D. P., Bradnam, K. R., Young, H. A., Telis, N., May, M. R., Ruby, J. G., and Garcia, J. F. (2013) Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution, Genome Biol., 14, R10.

    Google Scholar 

  71. Kuznetsova, I., Podgornaya, O., and Ferguson-Smith, M. A. (2006) High-resolution organization of mouse centromeric and pericentromeric DNA, Cytogenet. Genome Res., 112, 248–255.

    Article  CAS  PubMed  Google Scholar 

  72. Lobov, I. B., Tsutsui, K., Mitchell, A. R., and Podgornaya, O. (2000) Specific interaction of mouse major satellite with MAR-binding protein SAF-A, Europ. J. Cell Biol., 79, 839–849.

    Article  CAS  PubMed  Google Scholar 

  73. Lobov, I. B., Tsutsui, K., Mitchell, A. R., and Podgornaya, O. I. (2001) Specificity of SAF−A and lamin B binding in vitro correlates with the satellite DNA bending state, J. Cell. Biochem., 83, 218–229.

    Article  CAS  PubMed  Google Scholar 

  74. Enukashvily, N., Donev, R., Sheer, D., and Podgornaya, O. (2005) Satellite DNA binding and cellular localisation of RNA helicase P68, J. Cell Sci., 118, 611–622.

    Article  CAS  PubMed  Google Scholar 

  75. Podgornaya, O. I., Voronin, A. P., Enukashvily, N., Matveev, I. V., and Lobov, I. B. (2003) Structure-specific DNA-binding proteins as the foundation for three-dimensional chromatin organization, Int. Rev. Cytol., 224, 227–296.

    Article  CAS  PubMed  Google Scholar 

  76. Fondon, J. W., and Garner, H. R. (2004) Molecular origins of rapid and continuous morphological evolution, Proc. Natl. Acad. Sci. USA, 101, 18058–18063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Politz, J. C. R., Scalzo, D., and Groudine, M. (2013) Something silent this way forms: the functional organization of the repressive nuclear compartment, Ann. Rev. Cell Develop. Biol., 29, 241–270.

    Article  CAS  Google Scholar 

  78. Cremer, M., Solovei, I., Schermelleh, L., and Cremer, T. (2003) Chromosomal arrangement during different phases of the cell cycle, in Nature Encyclopedia of the Human Genome, Macmillan Publishers Ltd., Nature Publishing Group, pp. 451–457.

    Google Scholar 

  79. Kuznetsova, I. S., Enukashvily, N. I., Noniashvili, E. M., Shatrova, A. N., Aksenov, N. D., Zenin, V. V., Dyban, A. P., and Podgornaya, O. I. (2007) Evidence for the existence of satellite DNA-containing connection between metaphase chromosomes, J. Cell. Biochem., 101, 1046–1061.

    Article  CAS  PubMed  Google Scholar 

  80. Wang, L. H.-C., Schwarzbraun, T., Speicher, M. R., and Nigg, E. A. (2008) Persistence of DNA threads in human anaphase cells suggests late completion of sister chromatid decatenation, Chromosoma, 117, 123–135.

    Article  PubMed  Google Scholar 

  81. Dreissig, S., Schiml, S., Schindele, P., Weiss, O., Rutten, T., Schubert, V., and Houben, A. (2017) Live cell CRISPR-imaging in plants reveals dynamic telomere movements, Plant J., 91, 565–573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Cohen, A. K., Huh, T. Y., and Helleiner, C. W. (1973) Transcription of satellite DNA in mouse L-cells, Can. J. Biochem., 51, 529–532.

    Article  CAS  PubMed  Google Scholar 

  83. Cohen, A. K., Rode, H. N., and Helleiner, C. W. (1972) The time of synthesis of satellite DNA in mouse cells (L cells), Can. J. Biochem., 50, 229–231.

    Article  CAS  PubMed  Google Scholar 

  84. Seidman, M. M., and Cole, R. D. (1977) Chromatin fractionation related to cell type and chromosome condensation but perhaps not to transcriptional activity, J. Biol. Chem., 252, 2630–2639.

    CAS  PubMed  Google Scholar 

  85. Haaf, T., and Ward, D. C. (1996) Inhibition of RNA polymerase II transcription causes chromatin decondensation, loss of nucleolar structure, and dispersion of chromosomal domains, Exp. Cell Res., 224, 163–173.

    CAS  PubMed  Google Scholar 

  86. Macgregor, H. C. (1979) In situ hybridization of highly repetitive DNA to chromosomes of Triturus cristatus, Chromosoma, 71, 57–64.

    Article  CAS  PubMed  Google Scholar 

  87. Varley, J. M., Macgregor, H. C., Nardi, I., Andrews, C., and Erba, H. P. (1980) Cytological evidence of transcription of highly repeated DNA sequences during the lamp-brush stage in Triturus cristatus carnifex, Chromosoma, 80, 289–307.

    Article  CAS  PubMed  Google Scholar 

  88. Krasikova, A. V., Vasilevskaia, E. V., and Gaginskaia, E. R. (2010) Chicken lampbrush chromosomes: transcription of tandemly repetitive DNA sequences, Genetika, 46, 1329–1334.

    CAS  PubMed  Google Scholar 

  89. Rouleux-Bonnin, F., Bigot, S., and Bigot, Y. (2004) Structural and transcriptional features of Bombus terrestris satellite DNA and their potential involvement in the differentiation process, Genome, 47, 877–888.

    Article  CAS  PubMed  Google Scholar 

  90. Rizzi, N., Denegri, M., Chiodi, I., Corioni, M., Valgardsdottir, R., Cobianchi, F., and Biamonti, G. (2004) Transcriptional activation of a constitutive heterochromatic domain of the human genome in response to heat shock, Mol. Biol. Cell, 15, 543–551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lehnertz, B., Ueda, Y., Derijck, A. A., Braunschweig, U., Perez-Burgos, L., Kubicek, S., and Peters, A. H. (2003) Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin, Curr. Biol., 13, 1192–1200.

    Article  CAS  PubMed  Google Scholar 

  92. Rudert, F., Bronner, S., Garnier, J. M., and Dolle, P. (1995) Transcripts from opposite strands of gamma satellite DNA are differentially expressed during mouse development, Mamm. Genome, 6, 76–83.

    Article  CAS  PubMed  Google Scholar 

  93. Lorite, P., Renault, S., Rouleux-Bonnin, F., Bigot, S., Periquet, G., and Palomeque, T. (2002) Genomic organization and transcription of satellite DNA in the ant Aphaenogaster subterranea (Hymenoptera, Formicidae), Genome, 45, 609–616.

    Article  CAS  PubMed  Google Scholar 

  94. Lee, H. R., Neumann, P., Macas, J., and Jiang, J. (2006) Chromosomal localization, copy number assessment, and transcriptional status of BamHI repeat fractions in water buffalo Bubalus bubalis, Mol. Biol. Evol., 23, 2505–2520.

    CAS  Google Scholar 

  95. Ting, D. T., Lipson, D., Paul, S., Brannigan, B. W., Akhavanfard, S., Coffman, E. J., and Rivera, M. N. (2011) Aberrant overexpression of satellite repeats in pancreatic and other epithelial cancers, Science, 331, 593–596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kuznetsova, I. S., Thevasagayam, N. M., Sridatta, P. S., Komissarov, A. S., Saju, J. M., Ngoh, S. Y., Jiang, J., Shen, X., and Orban, L. (2014) Primary analysis of repeat elements of the Asian seabass (Lates calcarifer) transcriptome and genome, Front. Genet., doi: 10.3389/ fgene.2014.00223.

    Google Scholar 

  97. Saksouk, N., Simboeck, E., and Dejardin, J. (2015) Constitutive heterochromatin formation and transcription in mammals, Epigenet. Chromatin, doi: 10.1186/1756-8935-8-3.

    Google Scholar 

  98. Enukashvily, N. I., and Ponomartsev, N. V. (2013) Mammalian satellite DNA: a speaking dumb, Adv. Protein Chem. Struct. Biol., 90, 31–65.

    Article  CAS  PubMed  Google Scholar 

  99. Valgardsdottir, R., Chiodi, I., Giordano, M., Rossi, A., Bazzini, S., Ghigna, C., Riva, S., and Biamonti, G. (2008) Transcription of satellite III non-coding RNAs is a general stress response in human cells, Nucleic Acids Res., 36, 423–434.

    Article  CAS  PubMed  Google Scholar 

  100. Lu, J., and Gilbert, D. M. (2007) Proliferation-dependent and cell cycle-regulated transcription of mouse pericentric heterochromatin, J. Cell Biol., 179, 411–421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Bersani, F., Leeb, E., Kharchenko, P. V., Xu, A. W., Liu, M., Xega, K., MacKenzie, O. C., Brannigan, B. W., Wittner, B. S., Jung, H., Ramaswamy, S., Park, P. J., Maheswaran, S., Ting, D. T., and Haber, D. A. (2015) Pericentromeric satellite repeat expansions through RNA-derived DNA intermediates in cancer, Proc. Natl. Acad. Sci. USA, 112, 15148–15153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kuznetsova, T. V., Enukashvily, N. I., Trofimova, I. L., Gorbunova, A., Vashukova, E. S., and Baranov, V. S. (2012) Localization and transcription of human chromosome 1 pericentromeric heterochromatin in embryonic and extraembryonic tis sues, Med. Genet. (Moscow), 11, 19–24.

    Google Scholar 

  103. Trofimova, I. L., Enukashvily, N. I., Kuznetsova, T. V., and Baranov, V. S. (2018) Transcription of satellite DNA in human embryogenesis: literature review and our own data, Med. Genet. (Moscow), 17, 3–7.

    Google Scholar 

  104. Suzuki, T., Fujii, M., and Ayusawa, D. (2002) Demethylation of classical satellite 2 and 3 DNA with chromosomal instability in senescent human fibroblasts, Exp. Gerontol., 37, 1005–1014.

    Article  CAS  PubMed  Google Scholar 

  105. Tessadori, F., Schulkes, R. K., Van Driel, R., and Fransz, P. (2007) Light-regulated large-scale reorganization of chromatin during the floral transition in Arabidopsis, Plant J., 50, 848–857.

    Article  CAS  PubMed  Google Scholar 

  106. Zhang, P., Kerkela, E., Skottman, H., Levkov, L., Kivinen, K., Lahesmaa, R., and Kere, J. (2007) Distinct sets of developmentally regulated genes that are expressed by human oocytes and human embryonic stem cells, Fertil. Steril., 87, 677–690.

    Article  CAS  PubMed  Google Scholar 

  107. Gerrard, D. T., Berry, A. A., Jennings, R. E., Hanley, K. P., Bobola, N., and Hanley, N. A. (2016) An integrative transcriptomic atlas of organogenesis in human embryos, Elife, pii: e15657.

    Google Scholar 

  108. Santenard, A., Ziegler-Birling, C., Koch, M., Tora, L., Bannister, A. J., and Torres-Padilla, M. E. (2010) Heterochromatin formation in the mouse embryo requires critical residues of the histone variant H3.3, Nat. Cell Biol., 12, 853–862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Enukashvily, N. I., Malashicheva, A. B., and Waisertreiger, I. S. (2009) Satellite DNA spatial localization and transcriptional activity in mouse embryonic E-14 and IOUD2 stem cells, Cytogenet. Genome Res., 124, 277–287.

    Article  CAS  PubMed  Google Scholar 

  110. Kuhn, G. C. S. (2015) Satellite DNA transcripts have diverse biological roles in Drosophila, Heredity, 115, 1–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Bouzinba-Segard, H., Guais, A., and Francastel, C. (2006) Accumulation of small murine minor satellite transcripts leads to impaired centromeric architecture and function, Proc. Natl. Acad. Sci. USA, 103, 8709–8714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Gaubatz, J. W., and Cutler, R. G. (1990) Mouse satellite DNA is transcribed in senescent cardiac muscle, J. Biol. Chem., 265, 17753–17758.

    CAS  PubMed  Google Scholar 

  113. Pastor, B. M., and Mostoslavsky, R. (2016) SIRT6: a new guardian of mitosis, Nat. Struct. Mol. Biol., 23, 360–362.

    Article  PubMed  CAS  Google Scholar 

  114. Chan, D. L., Moralli, D., Khoja, S., and Monaco, Z. L. (2017) Noncoding centromeric RNA expression impairs chromosome stability in human and murine stem cells, Dis. Markers, 7506976.

    Google Scholar 

  115. Enukashvily, N. I., Donev, R., Waisertreiger, I. S.-R., and Podgornaya, O. I. (2007) Human chromosome 1 satellite 3 DNA is decondensed, demethylated and transcribed in senescent cells and in A431 epithelial carcinoma cells, Cytogenet. Genome Res., 118, 42–54.

    CAS  PubMed  Google Scholar 

  116. De Cecco, M., Criscione, S. W., Peckham, E. J., Hillenmeyer, S., Hamm, E. A., Manivannan, J., Peterson, A. L., Kreiling, J. A., Neretti, N., and Sedivy, J. M. (2013) Genomes of replicatively senescent cells undergo global epigenetic changes leading to gene silencing and activation of transposable elements, Aging Cell, 12, 247–256.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Wong, L. H., Brettingham-Moore, K. H., Chan, L., Quach, J. M., Anderson, M. A., Northrop, E. L., Hannan, R., Saffery, R., Shaw, M. L., Williams, E., and Choo, K. A. (2007) Centromere RNA is a key component for the assembly of nucleoproteins at the nucleolus and centromere, Genome Res., 17, 1146–1160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Du, Y., Topp, C. N., and Dawe, R. K. (2010) DNA binding of centromere protein C (CENPC) is stabilized by single-stranded RNA, PLoS Genet., 6, e1000835.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Eymery, A., Souchier, C., Vourc’h, C., and Jolly, C. (2010) Heat shock factor 1 binds to and transcribes satellite II and III sequences at several pericentromeric regions in heat-shocked cells, Exp. Cell Res., 316, 1845–1855.

    Article  CAS  PubMed  Google Scholar 

  120. Jolly, C., Metz, A., Govin, J., Vigneron, M., Turner, B. M., Khochbin, S., and Vourc’h, C. (2004) Stress-induced transcription of satellite III repeats, J. Cell. Biol., 164, 25–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Col, E., Hoghoughi, N., Dufour, S., Penin, J., Koskas, S., Faure, V., Ouzounova, M., Hernandez-Vargash, H., Reynoird, N., Daujat, S., Folco, E., Vigneron, M., Schneider, R., Verdel, A., Khochbin, S., Herceg, Z., Caron, C., and Vourc’h, C. (2017) Bromodomain factors of BET family are new essential actors of pericentric heterochromatin transcriptional activation in response to heat shock, Nature Sci. Rep., 7, 5418.

    Article  CAS  Google Scholar 

  122. Sengupta, S., Parihar, R., and Ganesh, S. (2009) Satellite III non-coding RNAs show distinct and stress-specific patterns of induction, Biochem. Biophys. Res. Commun., 382, 102–107.

    Article  CAS  PubMed  Google Scholar 

  123. Morozov, V. M., Gavrilova, E. V., Ogryzko, V. V., and Ishov, A. M. (2012) Dualistic function of Dax at centromeric and pericentromeric heterochromatin in normal and stress conditions, Nucleus, 3, 276–285.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Pezer, Z., and Ugarkovic, D. (2012) Satellite DNA-associated siRNAs as mediators of heat shock response in insects, RNA Biol., 9, 587–595.

    Article  CAS  PubMed  Google Scholar 

  125. Wang, Y., Zhang, Z., Chi, Y., Zhang, Q., Xu, F., Yang, Z., Meng, L., Yang, S., Yan, S., Mao, A., Zhang, J., Yang, Y., Wang, S., Cui, J., Liang, L., Ji, Y., Han, Z.-B., Fang, X., and Han, Z. C. (2013) Long-term cultured mesenchymal stem cells frequently develop genomic mutations but do not undergo malignant transformation, Cell Death Dis., 4, 950.

    Article  CAS  Google Scholar 

  126. Ponomartsev, N., Bulavin, D., Enukashvily, N., and Brichkina, A. (2016) Transcription of pericentromeric major satellite DNA in lung cancer, Cytogenet. Genome Res., 148, 146.

    Google Scholar 

  127. Ruiz-Herrera, A., Castresana, J., and Robinson, T. J. (2006) Is mammalian chromosomal evolution driven by regions of genome fragility? Genome Biol., 7, 115.

    Article  CAS  Google Scholar 

  128. Podgornaya, O. I. (2016) Extracellular DNA for the unsolved evolutionary problems, Tsitologiya, 58, 385–388.

    CAS  Google Scholar 

  129. Anker, P., Stroun, M., and Maurice, P. A. (1975) Spontaneous release of DNA by human blood lymphocytes as shown in vitro system, Cancer Res., 35, 2375–2382.

    CAS  PubMed  Google Scholar 

  130. Vasyukhin, V. I., Lipskaya, L. A., Tsvetkov, A. G., and Podgornaya, O. I. (1991) DNA excreted by human lymphocytes contains sequences homologous to Ck gene, Mol. Biol. (Moscow), 25, 405–412.

    CAS  Google Scholar 

  131. Vasioukhin, V., Anker, P., Maurice, P., Lyautey, J., Lederrey, C., and Stroun, M. (1994) Point mutations of the N-ras gene in the blood plasma DNA of patients with myelodysplastic syndrome or acute myelogenous leukaemia, Brit. J. Haematol., 86, 774–779.

    Article  CAS  Google Scholar 

  132. Thierry, A. R., Mouliere, F., El Messaoudi, S., Mollevi, C., Lopez-Crapez, E., Rolet, F., Gillet, B., Gongora, C., Dechelotte, P., Robert, B., Del Rio, M., Lamy, P.-J., Bibeau, F., Nouaille, M., Loriot, V., Jarrousse, A.-S., Molina, F., Mathonnet, M., Pezet, D., and Ychou, M. (2014) Clinical validation of the detection of KRAS and BRAF mutations from circulating tumor DNA, Nat. Med., 20, 430–435.

    Article  CAS  PubMed  Google Scholar 

  133. Murtaza, M., Dawson, S. J., Tsui, D. W., Gale, D., Forshew, T., Piskorz, A. M., Parkinson, C., Chin, S.-F., Kingsbury, Z., Wong, A. S. C., Marass, F., Humphray, S., Hadfield, J., Bentley, D., Chin, T. M., Brenton, J. D., Caldas, C., and Rosenfeld, N. (2013) Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA, Nature, 497, 108–112.

    Article  CAS  PubMed  Google Scholar 

  134. Rykova, E. Y., Morozkin, E. S., Ponomaryova, A. A., Loseva, E. M., Zaporozhchenko, I. A., Cherdyntseva, N. V., Vlasov, V. V., and Laktionov, P. P. (2012) Cell-free and cell-bound circulating nucleic acid complexes: mechanisms of generation, concentration and content, Expert. Opin. Biol. Ther., 12, 141–153.

    Article  CAS  Google Scholar 

  135. Mittra, I., Khare, N. K., Raghuram, G. V., Chaubal, R., Khambatti, F., Gupta, D., Gaikwad, A., Prasannan, P., Singh, A., Iyer, A., Singh, A., Upadhyay, P., Nair, N. K., Mishra, P. K., and Dutt, A. (2015) Circulating nucleic acids damage DNA of healthy cells by integrating into their genomes, J. Biosci., 40, 91–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Morozkin, E. S., Loseva, E. M., Morozov, I. V., Kurilshikov, A. M., Bondar, A. A., Rykova, E. Y., Rubtsov, N. B., Vlasov, V. V., and Laktionov, P. P. (2012) A comparative study of cell-free apoptotic and genomic DNA using FISH and massive parallel sequencing, Expert Opin. Biol. Ther., 12, 141–153.

    Article  CAS  Google Scholar 

  137. Beck, J., Urnovitz, H. B., Riggert, J., Clerici, M., and Schutz, E. (2009) Profile of the circulating DNA in apparently healthy individuals, Clin. Chem., 55, 730–738.

    Article  CAS  PubMed  Google Scholar 

  138. Vasil’eva, I. N., Podgornaya, O. I., and Bespalov, V. G. (2015) Nucleosome fraction of extracellular DNA as the index of apoptosis, Tsitologiya, 57, 87–94.

    Google Scholar 

  139. Cheng, J., Torkamani, A., Peng, Y., Jones, T. M., and Lerner, R. A. (2012) Plasma membrane associated transcription of cytoplasmic DNA, Proc. Natl. Acad. Sci. USA, 109, 10827–10831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Youngera, S. T., and Rinna, J. L. (2015) Silent pericentromeric repeats speak out, Proc. Natl. Acad. Sci. USA, 112, 15008–15009.

    Article  CAS  Google Scholar 

  141. Podgornaya, O. I., Vasilyeva, I. N., and Bespalov, V. G. (2016) Heterochromatic tandem repeats in the extracellular DNA, in Circulating Nucleic Acids in Serum and Plasma–CNAPS IX, pp. 85–89.

    Chapter  Google Scholar 

  142. Earnshaw, W. C., Halligan, N., Cooke, C., and Rothfield, N. (1984) The kinetochore is part of the metaphase chromosome scaffold, J. Cell. Biol., 98, 352–357.

    Article  CAS  PubMed  Google Scholar 

  143. Zasadzinska, E., and Foltz, D. R. (2017) Orchestrating the specific assembly of centromeric nucleosomes, in Centromeres and Kinetochores, Springer, Cham, pp. 165–192.

    Chapter  Google Scholar 

  144. Van Helden, P. D. (1985) Potential Z-DNA-forming elements in serum DNA from human systemic lupus erythematosus, J. Immunol., 134, 177–179.

    PubMed  Google Scholar 

  145. Herrman, M., Leitmann, W., Krapf, E. F., and Kalden, J. R. (1989) Molecular characterization and in vitro effects of nucleic acids from plasma of patients with systemic lupus erythematosus, in Molecular and Cellular Mechanisms of Human Hypersensitivity and Autoimmunity, Wiley, New York, pp. 147–157.

    Google Scholar 

  146. Winter, O., Musiol, S., Schabowsky, M., Cheng, Q., Khodadadi, L., and Hiepe, F. (2015) Analyzing pathogenic (double-stranded (ds) DNA-specific) plasma cells via immunofluorescence microscopy, Arthritis Res. Ther., 17, 293.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Ostromyshenskii, D. I., Kuznetsova, I. S., Golenishchev, F. N., Malikov, V. G., and Podgornaya, O. I. (2011) Satellite DNA as a phylogenetic marker: case study of three genera of the murine subfamily, Cell Tiss. Biol., 5, 543–550.

    Article  Google Scholar 

  148. Carey, N. (2015) Junk DNA: A Journey through the Dark Matter of the Genome, Icon Books.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. I. Podgornaya.

Additional information

Original Russian Text © O. I. Podgornaya, D. I. Ostromyshenskii, N. I. Enukashvily1, 2018, published in Biokhimiya, 2018, Vol. 83, No. 4, pp. 607–624.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podgornaya, O.I., Ostromyshenskii, D.I. & Enukashvily, N.I. Who Needs This Junk, or Genomic Dark Matter. Biochemistry Moscow 83, 450–466 (2018). https://doi.org/10.1134/S0006297918040156

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297918040156

Keywords

Navigation