Skip to main content
Log in

Interpreting Chromosomal Rearrangements in the Context of 3-Dimentional Genome Organization: A Practical Guide for Medical Genetics

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

In this exciting era of “next-gen cytogenetics”, the use of novel molecular methods such as comparative genome hybridization and whole genome and whole exome sequencing becomes more and more common in clinics. This results in generation of large amounts of high-resolution patient-specific data and challenges the development of new approaches for interpretation of obtained information. Usually, interpretation of chromosomal rearrangements is focused on alterations of linear genome sequence, underestimating the role of spatial chromatin organization. In this article, we describe the main features of 3-dimentional genome organization, emphasizing their role in normal and pathological development. We highlight some tips to help physicians estimating the impact of chromosomal rearrangements on the patient phenotype. A separate section describes available tools that can be used to visualize and analyze human genome architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

3C:

chromosome conformation capture (technology)

ChIP:

chromatin immunoprecipitation

DSBs:

double-strand DNA breaks

Hi-C method:

high-throughput extension of 3C technology

IGH:

immunoglobulin heavy chain

TADs:

topologically associating domains

References

  1. Richmond, T. J., and Davey, C. A. (2003) The structure of DNA in the nucleosome core, Nature, 423, 145–150.

    Article  CAS  PubMed  Google Scholar 

  2. Mirny, L. A. (2011) The fractal globule as a model of chromatin architecture in the cell, Chromosome Res., 19, 37–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Merkenschlager, M., and Nora, E. P. (2016) CTCF and cohesin in genome folding and transcriptional gene regulation, Annu. Rev. Genom. Human Genet., 17, 17–43.

    Article  CAS  Google Scholar 

  4. Bannister, A. J., and Kouzarides, T. (2011) Regulation of chromatin by histone modifications, Cell Res., 21, 381–395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dixon, J. R., Jung, I., Selvaraj, S., Shen, Y., Antosiewicz-Bourget, J. E., Lee, A. Y., Ye, Z., Kim, A., Rajagopal, N., Xie, W., Diao, Y., Liang, J., Zhao, H., Lobanenkov, V. V., Ecker, J. R., Thomson, J. A., and Ren, B. (2015) Chromatin architecture reorganization during stem cell differentiation, Nature, 518, 331–336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dixon, J. R., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., Hu, M., Liu, J. S., and Ren, B. (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions, Nature, 485, 376–380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rao, S. S. P., Huntley, M. H., Durand, N. C., Stamenova, E. K., Bochkov, I. D., Robinson, J. T., Sanborn, A. L., Machol, I., Omer, A. D., Lander, E. S., and Aiden, E. L. (2014) A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping, Cell, 159, 1665–1680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cremer, C., and Cremer, T. (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells, Nat. Rev. Genet., 2, 292–301.

    CAS  PubMed  Google Scholar 

  9. Dekker, J., Rippe, K., Dekker, M., and Kleckner, N. (2002) Capturing chromosome conformation, Science, 295, 1306–1311.

    Article  CAS  PubMed  Google Scholar 

  10. De Wit, E., and De Laat, W. (2012) A decade of 3C technologies-insights into nuclear organization, Genes Dev., 26, 11–24.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lieberman-Aiden, E., Van Berkum, N. L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B. R., Sabo, P. J., Dorschner, M. O., Sandstrom, R., Bernstein, B., Bender, M. A., Groudine, M., Gnirke, A., Stamatoyannopoulos, J., Mirny, L. A., Lander, E. S., and Dekker, J. (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome, Science, 326, 289–293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Imakaev, M., Fudenberg, G., McCord, R. P., Naumova, N., Goloborodko, A., Lajoie, B. R., Dekker, J., and Mirny, L. A. (2012) Iterative correction of Hi-C data reveals hall-marks of chromosome organization, Nat. Methods, 9, 999–1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Talbert, P. B., and Henikoff, S. (2006) Spreading of silent chromatin: inaction at a distance, Nat. Rev. Genet., 7, 793–803.

    Article  CAS  PubMed  Google Scholar 

  14. Lupianez, D. G., Kraft, K., Heinrich, V., Krawitz, P., Brancati, F., Klopocki, E., Horn, D., Kayserili, H., Opitz, J. M., Laxova, R., Santos-Simarro, F., Gilbert-Dussardier, B., Wittler, L., Borschiwer, M., Haas, S. A., Osterwalder, M., Franke, M., Timmermann, B., Hecht, J., Spielmann, M., Visel, A., and Mundlos, S. (2015) Disruptions of topological chromatin domains cause pathogenic rewiring of gene–enhancer interactions, Cell, 161, 1–14.

    Article  Google Scholar 

  15. Franke, M., Ibrahim, D. M., Andrey, G., Schwarzer, W., Heinrich, V., Schopflin, R., Kraft, K., Kempfer, R., Jerkovic, I., Chan, W.-L., Spielmann, M., Timmermann, B., Wittler, L., Kurth, I., Cambiaso, P., Zuffardi, O., Houge, G., Lambie, L., Brancati, F., Pombo, A., Vingron, M., Spitz, F., and Mundlos, S. (2016) Formation of new chromatin domains determines pathogenicity of genomic duplications, Nature, 538, 265–269.

    Article  CAS  PubMed  Google Scholar 

  16. Dekker, J., and Heard, E. (2015) Structural and functional diversity of topologically associating domains, FEBS Lett., 589, 2877–2884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Valton, A. L., and Dekker, J. (2016) TAD disruption as oncogenic driver, Curr. Opin. Genet. Dev., 36, 34–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Holwerda, S., and De Laat, W. (2012) Chromatin loops, gene positioning, and gene expression, Front. Genet., 3.

    Google Scholar 

  19. Tang, Z., Luo, O. J., Li, X., Zheng, M., Zhu, J. J., Szalaj, P., Trzaskoma, P., Magalska, A., Wlodarczyk, J., Ruszczycki, B., Michalski, P., Piecuch, E., Wang, P., Wang, D., Tian, S. Z., Penrad-Mobayed, M., Sachs, L. M., Ruan, X., Wei, C. L., Liu, E. T., Wilczynski, G. M., Plewczynski, D., Li, G., and Ruan, Y. (2015) CTCF-mediated human 3D genome architecture reveals chromatin topology for transcription, Cell, 163, 1611–1627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Flyamer, I. M., Gassler, J., Imakaev, M., Brandao, H. B., Ulianov, S. V., Abdennur, N., Razin, S. V., Mirny, L. A., and Tachibana-Konwalski, K. (2017) Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition, Nature, 544, 110–114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ulianov, S. V., Khrameeva, E. E., Gavrilov, A. A., Flyamer, I. M., Kos, P., Mikhaleva, E. A., Penin, A. A., Logacheva, M. D., Imakaev, M. V., Chertovich, A., Gelfand, M. S., Shevelyov, Y. Y., and Razin, S. V. (2016) Active chromatin and transcription play a key role in chromosome partitioning into topologically associating domains, Genome Res., 26, 70–84.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Weinreb, C., and Raphael, B. J. (2016) Identification of hierarchical chromatin domains, Bioinformatics, 32, 1601–1609.

    Article  CAS  PubMed  Google Scholar 

  23. Denker, A., and de Laat, W. (2016) The second decade of 3C technologies: detailed insights into nuclear organization, Genes Dev., 30, 1357–1382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vicente-Garcia, C., Villarejo-Balcells, B., Irastorza-Azcarate, I., Naranjo, S., Acemel, R. D., Tena, J. J., Rigby, P. W. J., Devos, D. P., Gomez-Skarmeta, J. L., and Carvajal, J. J. (2017) Regulatory landscape fusion in rhabdomyosarcoma through interactions between the PAX3 promoter and FOXO1 regulatory elements, Genome Biol., 18, 106.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ordulu, Z., Kammin, T., Brand, H., Pillalamarri, V., Redin, C. E., Collins, R. L., Blumenthal, I., Hanscom, C., Pereira, S., Crandall, B. F., Gerrol, P., Hayden, M. A., Hussain, N., Kanengisser-Pines, B., Kantarci, S., Levy, B., Macera, M. J., Quintero-Rivera, F., Spiegel, E., Stevens, B., Ulm, J. E., Warburton, D., Wilkins-Haug, L. E., Yachelevich, N., Gusella, J. F., Talkowski, M. E., and Morton, C. C. (2016) Structural chromosomal rearrangements require nucleotide-level resolution: lessons from next-generation sequencing in prenatal diagnosis, Am. J. Hum. Genet., 99, 1–19.

    Article  Google Scholar 

  26. Battulin, N., Fishman, V. S., Mazur, A. M., Pomaznoy, M., Khabarova, A. A., Afonnikov, D. A., Prokhortchouk, E. B., and Serov, O. L. (2015) Comparison of the 3D organization of sperm and fibroblast genomes using the Hi-C approach, Genome Biol., 16, 77.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kerpedjiev, P., Abdennur, N., Lekschas, F., McCallum, C., Dinkla, K., Strobelt, H., Luber, J. M., Ouellette, S. B., Ahzir, A., Kumar, N., Hwang, J., Alver, B. H., Pfister, H., Mirny, L. A., Park, P. J., and Gehlenborg, N. (2017) HiGlass: web-based visual comparison and exploration of genome interaction maps, bioRxiv, 1–7.

    Google Scholar 

  28. Durand, N. C., Robinson, J. T., Shamim, M. S., Machol, I., Mesirov, J. P., Lander, E. S., and Aiden, E. L. (2016) Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom, Cell Systems, 3, 99–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Phanstiel, D. H., Van Bortle, K., Spacek, D., Hess, G. T., Shamim, M. S., Machol, I., Love, M. I., Aiden, E. L., Bassik, M. C., and Snyder, M. P. (2017) Static and dynamic DNA loops form AP-1-bound activation hubs during macrophage development, Mol. Cell, 67, 1037–1048.

    Article  CAS  PubMed  Google Scholar 

  30. Mullighan, C. G., Goorha, S., Radtke, I., Miller, C. B., Coustan-Smith, E., Dalton, J. D., Girtman, K., Mathew, S., Ma, J., Pounds, S. B., Su, X., Pui, C.-H., Relling, M. V., Evans, W. E., Shurtleff, S. A., and Downing, J. R. (2007) Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia, Nature, 446, 758–764.

    Article  CAS  PubMed  Google Scholar 

  31. Hnisz, D., Weintraub, A. S., Day, D. S., Valton, A., Bak, R. O., Li, C. H., Goldmann, J., Lajoie, B. R., Fan, Z. P., Sigova, A., Reddy, J., Borges-Rivera, D., Lee, T. I., Jaenisch, R., Porteus, M. H., Dekker, J., and Young, R. (2016) Activation of proto-oncogenes by disruption of chromosome neighborhoods, Science, 351, 1454–1458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li, R., Liu, Y., Li, T., and Li, C. (2016) 3Disease browser: a web server for integrating 3D genome and disease-associated chromosome rearrangement data, Sci. Rep., 6, 34651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Engreitz, J. M., Agarwala, V., and Mirny, L. A. (2012) Three-dimensional genome architecture influences partner selection for chromosomal translocations in human disease, PLoS One, 7, e44196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang, Y., McCord, R. P., Ho, Y.-J., Lajoie, B. R., Hildebrand, D. G., Simon, A. C., Becker, M. S., Alt, F. W., and Dekker, J. (2012) Chromosomal translocations are guided by the spatial organization of the genome, Cell, 148, 908–921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lieber, M. R. (2016) Mechanisms of human lymphoid chromosomal translocations, Nat. Rev. Cancer, 16, 387–398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Aten, J. A., Stap, J., Krawczyk, P. M., Van Oven, C. H., Hoebe, R. A., Essers, J., and Kanaar, R. (2004) Dynamics of DNA double-strand breaks revealed by clustering of damaged chromosome domains, Science, 303, 92–95.

    Article  CAS  PubMed  Google Scholar 

  37. Iarovaia, O. V., Rubtsov, M. A., Ioudinkova, E., Tsfasman, T., Razin, S. V., and Vassetzky, Y. S. (2014) Dynamics of double strand breaks and chromosomal translocations, Mol. Cancer, 13, 249.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Grogg, K. L., Miller, R. F., and Dogan, A. (2006) HIV infection and lymphoma, J. Clin. Pathol., 60, 1365–1372.

    Article  Google Scholar 

  39. Osborne, C. S., Chakalova, L., Mitchell, J. A., Horton, A., Wood, A. L., Bolland, D. J., Corcoran, A. E., and Fraser, P. (2007) Myc dynamically and preferentially relocates to a transcription factory occupied by Igh, PLoS Biol., 5, 1763–1772.

    Article  CAS  Google Scholar 

  40. Musinova, Y. R., Sheval, E. V., Dib, C., Germini, D., and Vassetzky, Y. S. (2016) Functional roles of HIV-1 Tat protein in the nucleus, Cell. Mol. Life Sci., 73, 589–601.

    Article  CAS  PubMed  Google Scholar 

  41. Parada, L. A., McQueen, P. G., and Misteli, T. (2004) Tissue-specific spatial organization of genomes, Genome Biol., 5, R44.

    Google Scholar 

  42. Whalen, S., Truty, R. M., and Pollard, K. S. (2016) Enhancer–promoter interactions are encoded by complex genomic signatures on looping chromatin, Nat. Genet., 48, 488–496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Di Pierro, M., Cheng, R. R., Lieberman Aiden, E., Wolynes, P. G., and Onuchic, J. N. (2017) De novo prediction of human chromosome structures: epigenetic marking patterns encode genome architecture, Proc. Natl. Acad Sci. USA, 114, 12126–12131.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Fishman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fishman, V.S., Salnikov, P.A. & Battulin, N.R. Interpreting Chromosomal Rearrangements in the Context of 3-Dimentional Genome Organization: A Practical Guide for Medical Genetics. Biochemistry Moscow 83, 393–401 (2018). https://doi.org/10.1134/S0006297918040107

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297918040107

Keywords

Navigation