Biochemistry (Moscow)

, Volume 83, Issue 4, pp 370–380 | Cite as

Unsolvable Problems of Biology: It Is Impossible to Create Two Identical Organisms, to Defeat Cancer, or to Map Organisms onto Their Genomes

Review
  • 1 Downloads

Abstract

The review is devoted to unsolvable problems of biology. 1) Problems unsolvable due to stochastic mutations occurring during DNA replication that make it impossible to create two identical organisms or even two identical complex cells (Sverdlov, E. D. (2009) Biochemistry (Moscow), 74, 939–944) and to “defeat” cancer. 2) Problems unsolvable due to multiple interactions in complex systems leading to the appearance of unpredictable emergent properties that prevent establishment of unambiguous relationships between the genetic architecture and phenotypic manifestation of the genome and make impossible to predict with certainty responses of the organism, its parts, or pathological processes to external factors. 3) Problems unsolvable because of the uncertainty principle and observer effect in biology, due to which it is impossible to obtain adequate information about cells in their tissue microenvironment by isolating and analyzing individual cells. In particular, we cannot draw conclusions on the properties of stem cells in their niches based on the properties of stem cell cultures. A strategy is proposed for constructing the pattern most closely approximated to the relationship of genotypes with their phenotypes by designing networks of intermediate phenotypes (endophenotypes).

Keywords

stochastic mutations emergent properties heterogeneity biological uncertainty principle phenotype genotype selected function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Goldenfeld, N., and Kadanoff, L. P. (1999) Simple lessons from complexity, Science, 284, 87–89.CrossRefPubMedGoogle Scholar
  2. 2.
    Bohr, N. (1961) Atomic Physics and Human Knowledge [Russian translation], IL Publishers, Moscow, pp. 22–23.Google Scholar
  3. 3.
    Shklovsky, I. (1991) Echelon [in Russian], Novosti, Moscow, p. 109.Google Scholar
  4. 4.
    Sverdlov, E. D. (2009) Fundamental taboos of biology, Biochemistry (Moscow), 74, 939–944.CrossRefGoogle Scholar
  5. 5.
    Sverdlov, E. D. (2016) Multidimensional complexity of cancer. Simple solutions are needed, Biochemistry (Moscow), 81, 731–738.CrossRefGoogle Scholar
  6. 6.
    Sverdlov, E. D. (2014) Systems biology and personalized medicine: to be or not to be? Ross. Fiziol. Zh. im. I. M. Sechenova, 100, 505–541.PubMedGoogle Scholar
  7. 7.
    Granger, A., Mott, R., and Emambokus, N. (2016) Is aging as inevitable as death and taxes? Cell Metab., 23, 947–948.CrossRefPubMedGoogle Scholar
  8. 8.
    Vijg, J., and Le Bourg, E. (2017) Aging and the inevitable limit to human life span, Gerontology, 63, 432–434.CrossRefPubMedGoogle Scholar
  9. 9.
    Le Bourg, E., and Vijg, J. (2017) The future of human longevity: time for a reality check, Gerontology, 63, 527–528.CrossRefPubMedGoogle Scholar
  10. 10.
    Zbilut, J. P., and Giuliani, A. (2008) Biological uncertainty, Theory Biosci., 127, 223–227.CrossRefPubMedGoogle Scholar
  11. 11.
    Strippoli, P., Canaider, S., Noferini, F., D’Addabbo, P., Vitale, L., Facchin, F., Lenzi, L., Casadei, R., Carinci, P., Zannotti, M., and Frabetti, F. (2005) Uncertainty principle of genetic information in a living cell, Theor. Biol. Med. Model., 2, 40.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Tannock, I. F., and Hickman, J. A. (2016) Limits to personalized cancer medicine, N. Engl. J. Med., 375, 1289–1294.CrossRefPubMedGoogle Scholar
  13. 13.
    Milholland, B., Dong, X., Zhang, L., Hao, X., Suh, Y., and Vijg, J. (2017) Differences between germline and somatic mutation rates in humans and mice, Nat. Commun., 8, 15183.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Prindle, M. J., Fox, E. J., and Loeb, L. A. (2010) The mutator phenotype in cancer: molecular mechanisms and targeting strategies, Curr. Drug Targets, 11, 1296–1303.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Lynch, M. (2010) Rate, molecular spectrum, and consequences of human mutation, Proc. Natl. Acad. Sci. USA, 107, 961–968.CrossRefPubMedGoogle Scholar
  16. 16.
    Sverdlov, E. D., and Mineev, K. (2013) Mutation rate in stem cells: an underestimated barrier on the way to therapy, Trends Mol. Med., 19, 273–80.CrossRefPubMedGoogle Scholar
  17. 17.
    Narasimhan, V. M., Rahbari, R., Scally, A., Wuster, A., Mason, D., Xue, Y., Wright, J., Trembath, R. C., Maher, E. R., Heel, D. A. V., Auton, A., Hurles, M. E., Tyler-Smith, C., and Durbin, R. (2017) Estimating the human mutation rate from autozygous segments reveals population differences in human mutational processes, Nat. Commun., 8, 303.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Hong, Y., Cervantes, R. B., Tichy, E., Tischfield, J. A., and Stambrook, P. J. (2007) Protecting genomic integrity in somatic cells and embryonic stem cells, Mutat. Res., 614, 48–55.CrossRefPubMedGoogle Scholar
  19. 19.
    Luo, L. Z., Gopalakrishna-Pillai, S., Nay, S. L., Park, S. W., Bates, S. E., Zeng, X., Iverson, L. E., and O’Connor, T. R. (2012) DNA repair in human pluripotent stem cells is distinct from that in non-pluripotent human cells, PLoS One, 7, e30541.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Rebuzzini, P., Pignalosa, D., Mazzini, G., Di Liberto, R., Coppola, A., Terranova, N., Magni, P., Redi, C. A., Zuccotti, M., and Garagna, S. (2012) Mouse embryonic stem cells that survive gamma-rays exposure maintain pluripotent differentiation potential and genome stability, J. Cell. Physiol., 227, 1242–1249.CrossRefPubMedGoogle Scholar
  21. 21.
    Li, L., and Neaves, W. B. (2006) Normal stem cells and cancer stem cells: the niche matters, Cancer Res., 66, 4553–4557.CrossRefPubMedGoogle Scholar
  22. 22.
    Plaks, V., Kong, N., and Werb, Z. (2015) The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell. Stem. Cell, 16, 225–238.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Ye, J., Wu, D., Wu, P., Chen, Z., and Huang, J. (2014) The cancer stem cell niche: cross talk between cancer stem cells and their microenvironment, Tumour Biol., 35, 3945–3951.CrossRefPubMedGoogle Scholar
  24. 24.
    Gasperowicz, M., and Natale, D. R. (2011) Establishing three blastocyst lineages − then what? Biol. Reprod., 84, 621–630.CrossRefPubMedGoogle Scholar
  25. 25.
    Lynch, M., Ackerman, M. S., Gout, J. F., Long, H., Sung, W., Thomas, W. K., and Foster, P. L. (2016) Genetic drift, selection and the evolution of the mutation rate, Nat. Rev. Genet., 17, 704–714.PubMedGoogle Scholar
  26. 26.
    Otte, J., Wruck, W., and Adjaye, J. (2017) New insights into human primordial germ cells and early embryonic development from single-cell analysis, FEBS Lett., 591, 2226–2240.CrossRefPubMedGoogle Scholar
  27. 27.
    Chen, C., Qi, H., Shen, Y., Pickrell, J., and Przeworski, M. (2017) Contrasting determinants of mutation rates in germline and soma, Genetics, 207, 255–267.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Scally, A. (2016) The mutation rate in human evolution and demographic inference, Curr. Opin. Genet. Dev., 41, 36–43.CrossRefPubMedGoogle Scholar
  29. 29.
    Rahbari, R., Wuster, A., Lindsay, S. J., Hardwick, R. J., Alexandrov, L. B., Turki, S. A., Dominiczak, A., Morris, A., Porteous, D., Smith, B., Stratton, M. R., and Hurles, M. E. (2016) Timing, rates and spectra of human germline mutation, Nat. Genet., 48, 126–133.PubMedGoogle Scholar
  30. 30.
    De Ligt, J., Veltman, J. A., and Vissers, L. E. (2013) Point mutations as a source of de novo genetic disease, Curr. Opin. Genet. Dev., 23, 257–263.CrossRefPubMedGoogle Scholar
  31. 31.
    Arnheim, N., and Calabrese, P. (2016) Germline stem cell competition, mutation hot spots, genetic disorders, and older fathers, Annu. Rev. Genom. Hum. Genet., 17, 219–243.CrossRefGoogle Scholar
  32. 32.
    Campbell, C. D., and Eichler, E. E. (2013) Properties and rates of germline mutations in humans, Trends Genet., 29, 575–584.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Segurel, L., Wyman, M. J., and Przeworski, M. (2014) Determinants of mutation rate variation in the human germline, Annu. Rev. Genom. Hum. Genet., 15, 47–70.CrossRefGoogle Scholar
  34. 34.
    Freed, D., Stevens, E. L., and Pevsner, J. (2014) Somatic mosaicism in the human genome, Genes (Basel), 5, 1064–1094.CrossRefGoogle Scholar
  35. 35.
    Campbell, I. M., Shaw, C. A., Stankiewicz, P., and Lupski, J. R. (2015) Somatic mosaicism: implications for disease and transmission genetics, Trends Genet., 31, 382–392.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Zhang, N., Zhao, S., Zhang, S. H., Chen, J., Lu, D., Shen, M., and Li, C. (2015) Intra-monozygotic twin pair discordance and longitudinal variation of whole-genome scale DNA methylation in adults, PLoS One, 10, e0135022.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Baxter, A. G., and Hodgkin, P. D. (2015) No luck replicating the immune response in twins, Genome Med., 7, 29.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Greek, R., and Rice, M. J. (2013) Monozygotic twins: identical in name only, Anesthesiology, 118, 230.CrossRefPubMedGoogle Scholar
  39. 39.
    Van Dongen, J., Slagboom, P. E., Draisma, H. H., Martin, N. G., and Boomsma, D. I. (2012) The continuing value of twin studies in the omics era, Nat. Rev. Genet., 13, 640–653.CrossRefPubMedGoogle Scholar
  40. 40.
    McIntosh, H. (1996) 25 years ahead: will cancer be a “background-noise kind of disease”? J. Natl. Cancer Inst., 88, 1794–1798.CrossRefGoogle Scholar
  41. 41.
    DeGregori, J. (2017) Connecting cancer to its causes requires incorporation of effects on tissue microenvironments, Cancer Res., doi: 10.1158/0008-5472.CAN-17-1207.Google Scholar
  42. 42.
    Tomasetti, C., and Vogelstein, B. (2015) Cancer etiology. Variation in cancer risk among tissues can be explained by the number of stem cell divisions, Science, 347, 78–81.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Alekseenko, I. V., Kuzmich, A. I., Pleshkan, V. V., Tyulkina, D. V., Zinovyeva, M. V., Kostina, M. B., and Sverdlov, E. D. (2016) The cause of cancer mutations: Improvable bad life or inevitable stochastic replication errors? Mol. Biol. (Moscow), 50, 906–921.CrossRefGoogle Scholar
  44. 44.
    Tomasetti, C., Li, L., and Vogelstein, B. (2017) Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention, Science, 355, 1330–1334.PubMedGoogle Scholar
  45. 45.
    Waddell, N., Pajic, M., Patch, A. M., Chang, D. K., Kassahn, K. S., Bailey, P., Johns, A. L., Miller, D., Nones, K., Quek, K., Quinn, M. C., Robertson, A. J., Fadlullah, M. Z., Bruxner, T. J., Christ, A. N., Harliwong, I., Idrisoglu, S., Manning, S., Nourse, C., Nourbakhsh, E., Wani, S., Wilson, P. J., Markham, E., Cloonan, N., Anderson, M. J., Fink, J. L., Holmes, O., Kazakoff, S. H., Leonard, C., Newell, F., Poudel, B., Song, S., Taylor, D., Waddell, N., Wood, S., Xu, Q., Wu, J., Pinese, M., Cowley, M. J., Lee, H. C., Jones, M. D., Nagrial, A. M., Humphris, J., Chantrill, L. A., Chin, V., Steinmann, A. M., Mawson, A., Humphrey, E. S., Colvin, E. K., Chou, A., Scarlett, C. J., Pinho, A. V., Giry-Laterriere, M., Rooman, I., Samra, J. S., Kench, J. G., Pettitt, J. A., Merrett, N. D., Toon, C., Epari, K., Nguyen, N. Q., Barbour, A., Zeps, N., Jamieson, N. B., Graham, J. S., Niclou, S. P., Bjerkvig, R., Grutzmann, R., Aust, D., Hruban, R. H., Maitra, A., Iacobuzio-Donahue, C. A., Wolfgang, C. L., Morgan, R. A., Lawlor, R. T., Corbo, V., Bassi, C., Falconi, M., Zamboni, G., Tortora, G., Tempero, M. A.; Australian Pancreatic Cancer Genome Initiative, Gill, A. J., Eshleman, J. R., Pilarsky, C., Scarpa, A., Musgrove, E. A., Pearson, J. V., Biankin, A. V., and Grimmond, S. M. (2015) Whole genomes redefine the mutational landscape of pancreatic cancer, Nature, 518, 495–501.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Swanton, C. (2015) Cancer evolution constrained by mutation order, N. Engl. J. Med., 372, 661–663.CrossRefPubMedGoogle Scholar
  47. 47.
    Schlesner, M., and Eils, R. (2015) Hypermutation takes the driver’s seat, Genome Med., 7, 31.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Salk, J. J., Fox, E. J., and Loeb, L. A. (2010) Mutational heterogeneity in human cancers: origin and consequences, Annu. Rev. Pathol., 5, 51–75.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Gatenby, R., Gillies, R., and Brown, J. (2010) The evolutionary dynamics of cancer prevention, Nat. Rev. Cancer, 10, 526–527.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Sverdlov, E. D. (2011) Genetic surgery − a right strategy to attack cancer, Curr. Gene Ther., 11, 501–531.CrossRefPubMedGoogle Scholar
  51. 51.
    McAloose, D., and Newton, A. L. (2009) Wildlife cancer: a conservation perspective, Nat. Rev. Cancer, 9, 517–526.CrossRefPubMedGoogle Scholar
  52. 52.
    Greaves, M. (2007) Darwinian medicine: a case for cancer, Nat. Rev. Cancer, 7, 213–221.CrossRefPubMedGoogle Scholar
  53. 53.
    Greaves, M. (2015) Evolutionary determinants of cancer, Cancer Discov., 5, 806–820.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Aktipis, C. A., Boddy, A. M., Jansen, G., Hibner, U., Hochberg, M. E., Maley, C. C., and Wilkinson, G. S. (2015) Cancer across the tree of life: cooperation and cheating in multicellularity, Philos. Trans. R. Soc. Lond. B. Biol. Sci., 370, 1673.CrossRefGoogle Scholar
  55. 55.
    Breivik, J. (2016) Reframing the “Cancer Moonshot”: how experts and non-experts interpret the problem of cancer, EMBO Rep., 17, 1685–1687.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    DeGregori, J. (2011) Evolved tumor suppression: why are we so good at not getting cancer? Cancer Res., 71, 3739–3744.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Chalmers, Z. R., Connelly, C. F., Fabrizio, D., Gay, L., Ali, S. M., Ennis, R., Schrock, A., Campbell, B., Shlien, A., Chmielecki, J., Huang, F., He, Y., Sun, J., Tabori, U., Kennedy, M., Lieber, D. S., Roels, S., White, J., Otto, G. A., Ross, J. S., Garraway, L., Miller, V. A., Stephens, P. J., and Frampton, G. M. (2017) Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden, Genome Med., 9, 34.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Wood, L. D., Parsons, D. W., Jones, S., Lin, J., Sjoblom, T., Leary, R. J., Shen, D., Boca, S. M., Barber, T., Ptak, J., Silliman, N., Szabo, S., Dezso, Z., Ustyanksky, V., Nikolskaya, T., Nikolsky, Y., Karchin, R., Wilson, P. A., Kaminker, J. S., Zhang, Z., Croshaw, R., Willis, J., Dawson, D., Shipitsin, M., Willson, J. K., Sukumar, S., Polyak, K., Park, B. H., Pethiyagoda, C. L., Pant, P. V., Ballinger, D. G., Sparks, A. B., Hartigan, J., Smith, D. R., Suh, E., Papadopoulos, N., Buckhaults, P., Markowitz, S. D., Parmigiani, G., Kinzler, K. W., Velculescu, V. E., and Vogelstein, B. (2007) The genomic landscapes of human breast and colorectal cancers, Science, 318, 1108–1113.CrossRefPubMedGoogle Scholar
  59. 59.
    Easwaran, H., Tsai, H. C., and Baylin, S. B. (2014) Cancer epigenetics: tumor heterogeneity, plasticity of stem-like states, and drug resistance, Mol. Cell., 54, 716–727.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Pribluda, A., de la Cruz, C. C., and Jackson, E. L. (2015) Intratumoral heterogeneity: from diversity comes resistance, Clin. Cancer Res., 21, 2916–2923.CrossRefPubMedGoogle Scholar
  61. 61.
    Kaiser, J. (2009) Cancer research. Looking for a target on every tumor, Science, 326, 218–220.CrossRefPubMedGoogle Scholar
  62. 62.
    Mallick, P. (2015) Complexity and information: cancer as a multi-scale complex adaptive system, in Physical Sciences and Engineering Advances in Life Sciences and Oncology (Janmey, P., Fletcher, D., Gerecht, S., Levine, R., Mallick, P., McCarty, O., Munn, L., and Reinhart-King, C., eds.) Springer International Publishing, pp. 5–29.Google Scholar
  63. 63.
    Rickles, D., Hawe, P., and Shiell, A. (2007) A simple guide to chaos and complexity, J. Epid. Com. Health, 61, 933–937.CrossRefGoogle Scholar
  64. 64.
    Suki, B., Bates, J. H., and Frey, U. (2011) Complexity and emergent phenomena, Compr. Physiol., 1, 995–1029.PubMedGoogle Scholar
  65. 65.
    Noble, D. (2013) A biological relativity view of the relationships between genomes and phenotypes, Prog. Biophys. Mol. Biol., 111, 59–65.CrossRefPubMedGoogle Scholar
  66. 66.
    Korn, R. (2005) The emergence principle in biological hierarchies, Biol. Phil., 20, 137–151.CrossRefGoogle Scholar
  67. 67.
    Van Regenmortel, M. H. (2004) Reductionism and complexity in molecular biology. Scientists now have the tools to unravel biological and overcome the limitations of reductionism, EMBO Rep., 5, 1016–1020.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Greek, R., and Hansen, L. A. (2013) Questions regarding the predictive value of one evolved complex adaptive system for a second: exemplified by the SOD1 mouse, Prog. Biophys. Mol. Biol., 113, 231–253.CrossRefPubMedGoogle Scholar
  69. 69.
    Janson, N. (2012) Non-linear dynamics of biological systems, Contemp. Phys., 53, 137–168.CrossRefGoogle Scholar
  70. 70.
    Greek, R., and Menache, A. (2013) Systematic reviews of animal models: methodology versus epistemology, Int. J. Med. Sci., 10, 206–221.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Merlo, L. M., Pepper, J. W., Reid, B. J., and Maley, C. C. (2006) Cancer as an evolutionary and ecological process, Nat. Rev. Cancer, 6, 924–935.CrossRefPubMedGoogle Scholar
  72. 72.
    Hanahan, D., and Weinberg, R. A. (2011) Hallmarks of cancer: the next generation, Cell, 144, 646–674.CrossRefPubMedGoogle Scholar
  73. 73.
    Bissell, M. J., and Hines, W. C. (2011) Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression, Nat. Med., 17, 320–329.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Bordon, Y. (2015) Immunotherapy: checkpoint parley, Nat. Rev. Cancer, 15, 3.CrossRefPubMedGoogle Scholar
  75. 75.
    Smyth, M. J., Ngiow, S. F., Ribas, A., and Teng, M. W. (2016) Combination cancer immunotherapies tailored to the tumour microenvironment, Nat. Rev. Clin. Oncol., 13, 143–158.CrossRefPubMedGoogle Scholar
  76. 76.
    Park, J., Kwon, M., and Shin, E. C. (2016) Immune check-point inhibitors for cancer treatment, Arch. Pharm. Res., 39, 1577–1587.CrossRefPubMedGoogle Scholar
  77. 77.
    Postow, M. A., Callahan, M. K., and Wolchok, J. D. (2015) Immune checkpoint blockade in cancer therapy, J. Clin. Oncol., 33, 1974–1982.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Diesendruck, Y., and Benhar, I. (2017) Novel immune check point inhibiting antibodies in cancer therapy − opportunities and challenges, Drug Resist Updat., 30, 39–47.CrossRefPubMedGoogle Scholar
  79. 79.
    Vreeland, T., Clifton, G., Herbert, G., Hale, D., Jackson, D., Berry, J., and Peoples, G. (2016) Gaining ground on a cure through synergy: combining checkpoint inhibitors with cancer vaccines, Exp. Rev. Clin. Immunol., 12, 1347–1357.CrossRefGoogle Scholar
  80. 80.
    Calabrese, L., and Velcheti, V. (2017) Checkpoint immunotherapy: good for cancer therapy, bad for rheumatic diseases, Ann. Rheum. Dis., 76, 1–3.CrossRefPubMedGoogle Scholar
  81. 81.
    Postow, M., and Wolchok, J. (2016) Toxicities Associated with Checkpoint Inhibitor Immunotherapy (avilable from http://www.uptodate/com/contents/toxicities-associated-withchckpoint-inhibitor-immunotherapy).Google Scholar
  82. 82.
    The ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome, Nature, 489, 57–74.CrossRefPubMedCentralGoogle Scholar
  83. 83.
    Alberts, B. (2012) The end of “small science”? Science, 337, 1583.CrossRefPubMedGoogle Scholar
  84. 84.
    Evans, J. P., Meslin, E. M., Marteau, T. M., and Caulfield, T. (2011) Genomics. Deflating the genomic bubble, Science, 331, 861–862.CrossRefPubMedGoogle Scholar
  85. 85.
    Graur, D. (2016) Rubbish DNA: the functionless fraction of the human genome, arXiv:1601.06047v1[q-bio.GN].Google Scholar
  86. 86.
    Graur, D., Zheng, Y., and Azevedo, R. B. (2015) An evolutionary classification of genomic function, Genome Biol. Evol., 7, 642–645.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Doolittle, W. F., Brunet, T. D., Linquist, S., and Gregory, T. R. (2014) Distinguishing between “function” and “effect” in genome biology, Genome Biol. Evol., 6, 1234–1237.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Graur, D., Zheng, Y., Price, N., Azevedo, R. B., Zufall, R. A., and Elhaik, E. (2013) On the immortality of television sets: “function” in the human genome according to the evolution-free gospel of ENCODE, Genome Biol. Evol., 5, 578–590.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Graur, D. (2017) An upper limit on the functional fraction of the human genome, Genome Biol. Evol., 9, 1880–1885.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Brunet, T. D., and Doolittle, W. F. (2014) Getting “function” right, Proc. Natl. Acad. Sci. USA, 111, e3365.CrossRefPubMedGoogle Scholar
  91. 91.
    Nei, M. (2005) Selectionism and neutralism in molecular evolution, Mol. Biol. Evol., 22, 2318–2342.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Rands, C. M., Meader, S., Ponting, C. P., and Lunter, G. (2014) 8.2% of the human genome is constrained: variation in rates of turnover across functional element classes in the human lineage, PLoS Genet., 10, e1004525.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Brenner, S. (2010) Sequences and consequences, Philos Trans. R. Soc. Lond. B. Biol. Sci., 365, 207–212.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Sverdlov, E. (2006) Biological reductionism goes away? What is further? Vestn. Ros. Akad. Nauk, 76, 707–721.Google Scholar
  95. 95.
    Blanco-Gomez, A., Castillo-Lluva, S., Del Mar Saez-Freire, M., Hontecillas-Prieto, L., Mao, J. H., Castellanos-Martin, A., and Perez-Losada, J. (2016) Missing heritability of complex diseases: enlightenment by genetic variants from intermediate phenotypes, Bioessays, 38, 664–673.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Gottesman, I., and McGue, M. (2015) Endophenotypes, JohnWiley & Sons, Inc.CrossRefGoogle Scholar
  97. 97.
    Te Pas, M. F., Madsen, O., Calus, M. P., and Smits, M. A. (2017) The importance of endophenotypes to evaluate the relationship between genotype and external phenotype, Int. J. Mol. Sci., 18, e472.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Shemyakin–Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations