Biochemistry (Moscow)

, Volume 83, Issue 4, pp 359–369 | Cite as

Role of Nuclear Lamina in Gene Repression and Maintenance of Chromosome Architecture in the Nucleus

Review

Abstract

Nuclear lamina is a protein meshwork composed of lamins and lamin-associated proteins that lines the nuclear envelope from the inside and forms repressive transcription compartment. The review presents current data on the contribution of nuclear lamina to the repression of genes located in this compartment and on the mechanisms of chromatin attachment to the nuclear envelope.

Keywords

nuclear lamina lamina-associated domain nuclear envelope nuclear periphery repression 

Abbreviations

DamID

DNA adenine methyltransferase identification

FISH

fluorescent in situ hybridization

LAD

lamina-associated domain

LBR

lamin B receptor

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schirmer, E. C., and Foisner, R. (2007) Proteins that associate with lamins: many faces, many functions, Exp. Cell Res., 313, 2167–2179.PubMedGoogle Scholar
  2. 2.
    Prokocimer, M., Davidovich, M., Nissim-Rafinia, M., Wiesel-Motiuk, N., Bar, D. Z., Barkan, R., Meshorer, E., and Gruenbaum, Y. (2009) Nuclear lamins: key regulators of nuclear structure and activities, J. Cell Mol. Med., 13, 1059–1085.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Worman, H. J., Ostlund, C., and Wang, Y. (2010) Diseases of the nuclear envelope, Cold Spring Harb. Perspect. Biol., 2, a000760.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Trojer, P., and Reinberg, D. (2007) Facultative heterochromatin: is there a distinctive molecular signature? Mol. Cell, 28, 1–13.PubMedGoogle Scholar
  5. 5.
    Cabianca, D. S., and Gasser, S. M. (2016) Spatial segregation of heterochromatin: uncovering functionality in a mul-ticellular organism, Nucleus, 7, 301–307.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Solovei, I., Kreysing, M., Lanctot, C., Kosem, S., Peichl, L., Cremer, T., Guck, J., and Joffe, B. (2009) Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution, Cell, 137, 356–368.PubMedGoogle Scholar
  7. 7.
    Solovei, I., Wang, A. S., Thanisch, K., Schmidt, C. S., Krebs, S., Zwerger, M., Cohen, T. V., Devys, D., Foisner, R., Peichl, L., Herrmann, H., Blum, H., Engelkamp, D., Stewart, C. L., Leonhardt, H., and Joffe, B. (2013) LBR and lamin A/C sequentially tether peripheral heterochromatin and inversely regulate differentiation, Cell, 152, 584–598.PubMedGoogle Scholar
  8. 8.
    Comings, D. E. (1968) The rationale for an ordered arrangement of chromatin in the interphase nucleus, Am. J. Hum. Genet., 20, 440–460.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Hochstrasser, M., Mathog, D., Gruenbaum, Y., Saumweber, H., and Sedat, J. W. (1986) Spatial organization of chromosomes in the salivary gland nuclei of Drosophila melanogaster, J. Cell Biol., 102, 112–123.PubMedGoogle Scholar
  10. 10.
    Zhimulev, I. F., Semeshin, V. F., Kulichkov, V. A., and Belyaeva, E. S. (1982) Intercalary heterochromatin in Drosophila. I. Localization and general characteristics, Chromosoma, 87, 197–228.Google Scholar
  11. 11.
    Hochstrasser, M., and Sedat, J. W. (1987) Three-dimensional organization of Drosophila melanogaster interphase nuclei. II. Chromosome spatial organization and gene regulation, J. Cell Biol., 104, 1471–1483.PubMedGoogle Scholar
  12. 12.
    Marshall, W. F., Dernburg, A. F., Harmon, B., Agard, D. A., and Sedat, J. W. (1996) Specific interactions of chromatin with the nuclear envelope: positional determination within the nucleus in Drosophila melanogaster, Mol. Biol. Cell, 7, 825–842.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Van Steensel, B., and Henikoff, S. (2000) Identification of in vivo DNA targets of chromatin proteins using tethered Dam methyltransferase, Nat. Biotechnol., 18, 424–428.PubMedGoogle Scholar
  14. 14.
    Pickersgill, H., Kalverda, B., de Wit, E., Talhout, W., Fornerod, M., and van Steensel, B. (2006) Characterization of the Drosophila melanogaster genome at the nuclear lamina, Nat. Genet., 38, 1005–1014.PubMedGoogle Scholar
  15. 15.
    Guelen, L., Pagie, L., Brasset, E., Meuleman, W., Faza, M. B., Talhout, W., Eussen, B. H., de Klein, A., Wessels, L., de Laat, W., and van Steensel, B. (2008) Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions, Nature, 453, 948–951.PubMedGoogle Scholar
  16. 16.
    Ikegami, K., Egelhofer, T. A., Strome, S., and Lieb, J. D. (2010) Caenorhabditis elegans chromosome arms are anchored to the nuclear membrane via discontinuous association with LEM-2, Genome Biol., 11, R120.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Peric-Hupkes, D., Meuleman, W., Pagie, L., Bruggeman, S. W., Solovei, I., Brugman, W., Graf, S., Flicek, P., Kerkhoven, R. M., van Lohuizen, M., Reinders, M., Wessels, L., and van Steensel, B. (2010) Molecular maps of the reorganization of genome–nuclear lamina interactions during differentiation, Mol. Cell, 38, 603–613.PubMedGoogle Scholar
  18. 18.
    Van Bemmel, J. G., Pagie, L., Braunschweig, U., Brugman, W., Meuleman, W., Kerkhoven, R. M., and van Steensel, B. (2010) The insulator protein SU(HW) fine-tunes nuclear lamina interactions of the Drosophila genome, PLoS One, 5, e15013.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Handoko, L., Xu, H., Li, G., Ngan, C. Y., Chew, E., Schnapp, M., Lee, C. W., Ye, C., Ping, J. L., Mulawadi, F., Wong, E., Sheng, J., Zhang, Y., Poh, T., Chan, C. S., Kunarso, G., Shahab, A., Bourque, G., Cacheux-Rataboul, V., Sung, W. K., Ruan, Y., and Wei, C. L. (2011) CTCF-mediated functional chromatin interactome in pluripotent cells, Nat. Genet., 43, 630–638.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Meuleman, W., Peric-Hupkes, D., Kind, J., Beaudry, J. B., Pagie, L., Kellis, M., Reinders, M., Wessels, L., and van Steensel, B. (2013) Constitutive nuclear lamina–genome interactions are highly conserved and associated with A/T-rich sequence, Genome Res., 23, 270–280.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Sadaie, M., Salama, R., Carroll, T., Tomimatsu, K., Chandra, T., Young, A. R., Narita, M., Perez-Mancera, P. A., Bennett, D. C., Chong, H., Kimura, H., and Narita, M. (2013) Redistribution of the lamin B1 genomic binding profile affects rearrangement of heterochromatic domains and SAHF formation during senescence, Genes Dev., 27, 1800–1808.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Wu, F., and Yao, J. (2013) Spatial compartmentalization at the nuclear periphery characterized by genome-wide mapping, BMC Genomics, 14, 591.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Gonzalez-Aguilera, C., Ikegami, K., Ayuso, C., de Luis, A., Iniguez, M., Cabello, J., Lieb, J. D., and Askjaer, P. (2014) Genome-wide analysis links emerin to neuromuscular junction activity in Caenorhabditis elegans, Genome Biol., 15, R21.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Kind, J., and van Steensel, B. (2014) Stochastic genome–nuclear lamina interactions: modulating roles of lamin A and BAF, Nucleus, 5, 124–130.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Letourneau, A., Santoni, F. A., Bonilla, X., Sailani, M. R., Gonzalez, D., Kind, J., Chevalier, C., Thurman, R., Sandstrom, R. S., Hibaoui, Y., Garieri, M., Popadin, K., Falconnet, E., Gagnebin, M., Gehrig, C., Vannier, A., Guipponi, M., Farinelli, L., Robyr, D., Migliavacca, E., Borel, C., Deutsch, S., Feki, A., Stamatoyannopoulos, J. A., Herault, Y., van Steensel, B., Guigo, R., and Antonarakis, S. E. (2014) Domains of genome-wide gene expression dysregulation in Down’s syndrome, Nature, 508, 345–350.PubMedGoogle Scholar
  26. 26.
    Ragoczy, T., Telling, A., Scalzo, D., Kooperberg, C., and Groudine, M. (2014) Functional redundancy in the nuclear compartmentalization of the late-replicating genome, Nucleus, 5, 626–635.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Ryba, T., Hiratani, I., Lu, J., Itoh, M., Kulik, M., Zhang, J., Schulz, T. C., Robins, A. J., Dalton, S., and Gilbert, D. M. (2010) Evolutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types, Genome Res., 20, 761–770.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Zhimulev, I. F., Belyaeva, E. S., Vatolina, T. Y., and Demakov, S. A. (2012) Banding patterns in Drosophila melanogaster polytene chromosomes correlate with DNA-binding protein occupancy, Bioessays, 34, 498–508.PubMedGoogle Scholar
  29. 29.
    Brickner, J. H., and Walter, P. (2004) Gene recruitment of the activated INO1 locus to the nuclear membrane, PLoS Biol., 2, e342.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Casolari, J. M., Brown, C. R., Komili, S., West, J., Hieronymus, H., and Silver, P. A. (2004) Genome-wide localization of the nuclear transport machinery couples transcriptional status and nuclear organization, Cell, 117, 427–439.PubMedGoogle Scholar
  31. 31.
    Cabal, G. G., Genovesio, A., Rodriguez-Navarro, S., Zimmer, C., Gadal, O., Lesne, A., Buc, H., Feuerbach-Fournier, F., Olivo-Marin, J.-C., Hurt, E. C., and Nehrbass, U. (2006) SAGA interacting factors confine sub-diffusion of transcribed genes to the nuclear envelope, Nature, 441, 770–773.PubMedGoogle Scholar
  32. 32.
    Dieppois, G., Iglesias, N., and Stutz, F. (2006) Cotranscriptional recruitment to the mRNA export receptor Mex67p contributes to nuclear pore anchoring of activated genes, Mol. Cell. Biol., 26, 7858–7870.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Schmid, M., Arib, G., Laemmli, C., Nishikawa, J., Durussel, T., and Laemmli, U. K. (2006) Nup-PI: the nucleopore–promoter interaction of genes in yeast, Mol. Cell, 21, 379–391.PubMedGoogle Scholar
  34. 34.
    Taddei, A., Houwe, G. V., Hediger, F., Kalck, V., Cubizolles, F., Schober, H., and Gasser, S. M. (2006) Nuclear pore association confers optimal expression levels for an inducible yeast gene, Nature, 441, 774–778.PubMedGoogle Scholar
  35. 35.
    Brown, C. R., Kennedy, C. J., Delmar, V. A., Forbes, D. J., and Silver, P. A. (2008) Global histone acetylation induces functional genomic reorganization at mammalian nuclear pore complexes, Genes Dev., 22, 627–639.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Kohler, A., Schneider, M., Cabal, G. G., Nehrbass, U., and Hurt, E. (2008) Yeast ataxin-7 links histone deubiquitination with gene gating and mRNA export, Nature Cell Biol., 10, 707–715.PubMedGoogle Scholar
  37. 37.
    Rougemaille, M., Dieppois, G., Kisseleva-Romanova, E., Gudipati, R. K., Lemoine, S., Blugeon, C., Boulay, J., Jensen, T. H., Stutz, F., Devaux, F., and Libri, D. (2008) THO/Sub2p functions to coordinate 3′-end processing with gene–nuclear pore association, Cell, 135, 308–321.PubMedGoogle Scholar
  38. 38.
    Ahmed, S., Brickner, D. G., Light, W. H., Cajigas, I., McDonough, M., Froyshteter, A. B., Volpe, T., and Brickner, J. H. (2010) DNA zip codes control an ancient mechanism for gene targeting to the nuclear periphery, Nat. Cell Biol., 12, 111–118.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Kalverda, B., Pickersgill, H., Shloma, V. V., and Fornerod, M. (2010) Nucleoporins directly stimulate expression of developmental and cell-cycle genes inside the nucleoplasm, Cell, 140, 360–371.PubMedGoogle Scholar
  40. 40.
    Vaquerizas, J. M., Suyama, R., Kind, J., Miura, K., Luscombe, N. M., and Akhtar, A. (2010) Nuclear pore proteins Nup153 and Megator define transcriptionally active regions in the Drosophila genome, PLoS Genet., 6, e1000846.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Liang, Y., Franks, T. M., Marchetto, M. C., Gage, F. H., and Hetzer, M. W. (2013) Dynamic association of NUP98 with the human genome, PLoS Genet., 9, e1003308.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Jacinto, F. V., Benner, C., and Hetzer, M. W. (2015) The nucleoporin Nup153 regulates embryonic stem cell pluripotency through gene silencing, Genes Dev., 29, 1224–1238.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Ibarra, A., Benner, C., Tyagi, S., Cool, J., and Hetzer, M. W. (2016) Nucleoporin-mediated regulation of cell identity genes, Genes Dev., 30, 2253–2258.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Pascual-Garcia, P., Debo, B., Aleman, J. R., Talamas, J. A., Lan, Y., Nguyen, N. H., Won, K. J., and Capelson, M. (2017) Metazoan nuclear pores provide a scaffold for poised genes and mediate induced enhancer–promoter contacts, Mol. Cell, 66, 63–76.PubMedGoogle Scholar
  45. 45.
    Capelson, M., Liang, Y., Schulte, R., Mair, W., Wagner, U., and Hetzer, M. W. (2010) Chromatin-bound nuclear pore components regulate gene expression in higher eukaryotes, Cell, 140, 372–383.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Pascual-Garcia, P., Jeong, J., and Capelson, M. (2014) Nucleoporin Nup98 associates with Trx/MLL and NSL histone-modifying complexes and regulates Hox gene expression, Cell Rep., 9, 433–442.PubMedGoogle Scholar
  47. 47.
    Shevelyov, Y. Y., Lavrov, S. A., Mikhaylova, L. M., Nurminsky, I. D., Kulathinal, R. J., Egorova, K. S., Rozovsky, Y. M., and Nurminsky, D. I. (2009) The B-type lamin is required for somatic repression of testis-specific gene clusters, Proc. Natl. Acad. Sci. USA, 106, 3282–3287.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Mattout, A., Pike, B. L., Towbin, B. D., Bank, E. M., Gonzalez-Sandoval, A., Stadler, M. B., Meister, P., Gruenbaum, Y., and Gasser, S. M. (2011) An EDMD mutation in C. elegans lamin blocks muscle-specific gene relocation and compromises muscle integrity, Curr. Biol., 21, 1603–1614.PubMedGoogle Scholar
  49. 49.
    Zullo, J. M., Demarco, I. A., Pique-Regi, R., Gaffney, D. J., Epstein, C. B., Spooner, C. J., Luperchio, T. R., Bernstein, B. E., Pritchard, J. K., Reddy, K. L., and Singh, H. (2012) DNA sequence-dependent compartmentalization and silencing of chromatin at the nuclear lamina, Cell, 149, 1474–1487.PubMedGoogle Scholar
  50. 50.
    Kohwi, M., Lupton, J. R., Lai, S. L., Miller, M. R., and Doe, C. Q. (2013) Developmentally regulated subnuclear genome reorganization restricts neural progenitor competence in Drosophila, Cell, 152, 97–108.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Poleshko, A., Mansfield, K. M., Burlingame, C. C., Andrake, M. D., Shah, N. R., and Katz, R. A. (2013) The human protein PRR14 tethers heterochromatin to the nuclear lamina during interphase and mitotic exit, Cell Rep., 5, 292–301.PubMedGoogle Scholar
  52. 52.
    Wagner, N., Schmitt, J., and Krohne, G. (2004). Two novel LEM-domain proteins are splice products of the annotated Drosophila melanogaster gene CG9424 (Bocksbeutel), Eur. J. Cell Biol., 82, 605–616.PubMedGoogle Scholar
  53. 53.
    Wagner, N., Kagermeier, B., Loserth, S., and Krohne, G. (2006) The Drosophila melanogaster LEM-domain protein MAN1, Eur. J. Cell Biol., 85, 91–105.PubMedGoogle Scholar
  54. 54.
    Gigante, C. M., Dibattista, M., Dong, F. N., Zheng, X., Yue, S., Young, S. G., Reisert, J., Zheng, Y., and Zhao, H. (2017) Lamin B1 is required for mature neuron-specific gene expression during olfactory sensory neuron differentiation, Nat. Commun., 8, 15098.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Somech, R., Shaklai, S., Geller, O., Amariglio, N., Simon, A. J., Rechavi, G., and Gal-Yam, E. N. (2005) The nuclear-envelope protein and transcriptional repressor LAP2β interacts with HDAC3 at the nuclear periphery and induces histone H4 deacetylation, J. Cell Sci., 118, 4017–4025.PubMedGoogle Scholar
  56. 56.
    Holaska, J. M., and Wilson, K. L. (2007) An emerin “proteome”: purification of distinct emerin-containing complexes from HeLa cells suggests molecular basis for diverse roles including gene regulation, mRNA splicing, signaling, mechanosensing, and nuclear architecture, Biochemistry, 46, 8897–8908.PubMedGoogle Scholar
  57. 57.
    Poleshko, A., Shah, P. P., Gupta, M., Babu, A., Morley, M. P., Manderfield, L. J., Ifkovits, J. L., Calderon, D., Aghajanian, H., Sierra-Pagan, J. E., Sun, Z., Wang, Q., Li, L., Dubois, N. C., Morrisey, E. E., Lazar, M. A., Smith, C. L., Epstein, J. A., and Jain, R. (2017) Genome–nuclear lamina interactions regulate cardiac stem cell lineage restriction, Cell, 171, 573–587.PubMedGoogle Scholar
  58. 58.
    Wen, B., Wu, H., Shinkai, Y., Irizarry, R. A., and Feinberg, A. P. (2009) Large histone H3 lysine 9 dimethylated chromatin blocks distinguish differentiated from embryonic stem cells, Nat. Genet., 41, 246–250.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Kind, J., Pagie, L., Ortabozkoyun, H., Boyle, S., de Vries, S. S., Janssen, H., Amendola, M., Nolen, L. D., Bickmore, W. A., and van Steensel, B. (2013) Single-cell dynamics of genome–nuclear lamina interactions, Cell, 153, 178–192.PubMedGoogle Scholar
  60. 60.
    Bian, Q., Khanna, N., Alvikas, J., and Belmont, A. S. (2013) β-Globin cis-elements determine differential nuclear targeting through epigenetic modifications, J. Cell Biol., 203, 767–783.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Harr, J. C., Luperchio, T. R., Wong, X., Cohen, E., Wheelan, S. J., and Reddy, K. L. (2015) Directed targeting of chromatin to the nuclear lamina is mediated by chromatin state and A-type lamins, J. Cell Biol., 208, 33–52.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Luperchio, T. R., Sauria, M. E. G., Wong, X., Gaillard, M.-C., Tsang, P., Pekrun, K., Ach, R. A., Yamada, N. A., Taylor, J., and Reddy, K. L. (2017) Chromosome conformation paints reveal the role of lamina association in genome organization and regulation, bioRxiv preprint first posted online March 30; doi: https://doi.org/10.1101/ 122226.Google Scholar
  63. 63.
    Towbin, B. D., Meister, P., Pike, B. L., and Gasser, S. M. (2011) Repetitive transgenes in C. elegans accumulate heterochromatic marks and are sequestered at the nuclear envelope in a copy-number-and lamin-dependent manner, Cold Spring Harb. Symp. Quant. Biol., 75, 555–565.Google Scholar
  64. 64.
    Gonzalez-Sandoval, A., Towbin, B. D., Kalck, V., Cabianca, D. S., Gaidatzis, D., Hauer, M. H., Geng, L., Wang, L., Yang, T., Wang, X., Zhao, K., and Gasser, S. M. (2015) Perinuclear anchoring of H3K9-methylated chromatin stabilizes induced cell fate in C. elegans embryos, Cell, 163, 1333–1347.PubMedGoogle Scholar
  65. 65.
    Filion, G. J., van Bemmel, J. G., Braunschweig, U., Talhout, W., Kind, J., Ward, L. D., Brugman, W., de Castro, I. J., Kerkhoven, R. M., Bussemaker, H. J., and van Steensel, B. (2010) Systematic protein location mapping reveals five principal chromatin types in Drosophila cells, Cell, 143, 212–224.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Milon, B. C., Cheng, H., Tselebrovsky, M. V., Lavrov, S. A., Nenasheva, V. V., Mikhaleva, E. A., Shevelyov, Y. Y., and Nurminsky, D. I. (2012) Role of histone deacetylases in gene regulation at nuclear lamina, PLoS One, 7, e49692.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Hoger, T. H., Krohne, G., and Kleinschmidt, J. A. (1991) Interaction of Xenopus lamins A and LII with chromatin in vitro mediated by a sequence element in the carboxyterminal domain, Exp. Cell Res., 197, 280–289.PubMedGoogle Scholar
  68. 68.
    Glass, C. A., Glass, J. R., Taniura, H., Hasel, K. W., Blevitt, J. M., and Gerace, L. (1993) The α-helical rod domain of human lamins A and C contains a chromatin binding site, EMBO J., 12, 4413–4424.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Luderus, M. E., den Blaauwen, J. L., de Smit, O. J., Compton, D. A., and van Driel, R. (1994) Binding of matrix attachment regions to lamin polymers involves single-stranded regions and the minor groove, Mol. Cell. Biol., 14, 6297–6305.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Goldberg, M., Harel, A., Brandeis, M., Rechsteiner, T., Richmond, T. J., Weiss, A. M., and Gruenbaum, Y. (1999) The tail domain of lamin Dm0 binds histones H2A and H2B, Proc. Natl. Acad. Sci. USA, 96, 2852–2857.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Stierle, V., Couprie, J., Ostlund, C., Krimm, I., Zinn-Justin, S., Hossenlopp, P., Worman, H. J., Courvalin, J. C., and Duband-Goulet, I. (2003) The carboxyl-terminal region common to lamins A and C contains a DNA binding domain, Biochemistry, 42, 4819–4828.PubMedGoogle Scholar
  72. 72.
    Mattout, A., Goldberg, M., Tzur, Y., Margalit, A., and Gruenbaum, Y. (2007) Specific and conserved sequences in D. melanogaster and C. elegans lamins and histone H2A mediate the attachment of lamins to chromosomes, J. Cell Sci., 120 (Pt. 1), 77–85.PubMedGoogle Scholar
  73. 73.
    Foisner, R., and Gerace, L. (1993) Integral membrane proteins of the nuclear envelope interact with lamins and chromosomes, and binding is modulated by mitotic phosphorylation, Cell, 73, 1267–1279.PubMedGoogle Scholar
  74. 74.
    Furukawa, K., Glass, C., and Kondo, T. (1997) Characterization of the chromatin binding activity of lamina-associated polypeptide (LAP) 2, Biochem. Biophys. Res. Commun., 238, 240–246.PubMedGoogle Scholar
  75. 75.
    Ye, Q., and Worman, H. J. (1996) Interaction between an integral protein of the nuclear envelope inner membrane and human chromodomain proteins homologous to Drosophila HP1, J. Biol. Chem., 271, 14653–14656.PubMedGoogle Scholar
  76. 76.
    Polioudaki, H., Kourmouli, N., Drosou, V., Bakou, A., Theodoropoulos, P. A., Singh, P. B., Giannakouros, T., and Georgatos, S. D. (2001) Histones H3/H4 form a tight complex with the inner nuclear membrane protein LBR and heterochromatin protein 1, EMBO Rep., 2, 920–925.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Makatsori, D., Kourmouli, N., Polioudaki, H., Shultz, L. D., McLean, K., Theodoropoulos, P. A., Singh, P. B., and Georgatos, S. D. (2004) The inner nuclear membrane protein lamin B receptor forms distinct microdomains and links epigenetically marked chromatin to the nuclear envelope, J. Biol. Chem., 279, 25567–25573.PubMedGoogle Scholar
  78. 78.
    Hirano, Y., Hizume, K., Kimura, H., Takeyasu, K., Haraguchi, T., and Hiraoka, Y. (2012) Lamin B receptor recognizes specific modifications of histone H4 in heterochromatin formation, J. Biol. Chem., 287, 42654–42663.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Clowney, E. J., LeGros, M. A., Mosley, C. P., Clowney, F. G., Markenskoff-Papadimitriou, E. C., Myllys, M., Barnea, G., Larabell, C. A., and Lomvardas, S. (2012) Nuclear aggregation of olfactory receptor genes governs their monogenic expression, Cell, 151, 724–737.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Lukasova, E., Kovarik, A., Bacikova, A., Falk, M., and Kozubek, S. (2017) Loss of lamin B receptor is necessary to induce cellular senescence, Biochem. J., 474, 281–300.PubMedGoogle Scholar
  81. 81.
    Zhu, Y., Gong, K., Denholtz, M., Chandra, V., Kamps, M. P., Alber, F., and Murre, C. (2017) Comprehensive characterization of neutrophil genome topology, Genes Dev., 31, 141–153.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Zuleger, N., Boyle, S., Kelly, D. A., de las Heras, J. I., Lazou, V., Korfali, N., Batrakou, D. G., Randles, K. N., Morris, G. E., Harrison, D. J., Bickmore, W. A., and Schirmer, E. C. (2013) Specific nuclear envelope transmembrane proteins can promote the location of chromosomes to and from the nuclear periphery, Genome Biol., 14, R14.Google Scholar
  83. 83.
    Robson, M. I., de Las Heras, J. I., Czapiewski, R., Le Thanh, P., Booth, D. G., Kelly, D. A., Webb, S., Kerr, A. R. W., and Schirmer, E. C. (2016) Tissue-specific gene repositioning by muscle nuclear membrane proteins enhances repression of critical developmental genes during myogenesis, Mol. Cell, 62, 834–847.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Kind, J., Pagie, L., de Vries, S. S., Nahidiazar, L., Dey, S. S., Bienko, M., Zhan, Y., Lajoie, B., de Graaf, C. A., Amendola, M., Fudenberg, G., Imakaev, M., Mirny, L. A., Jalink, K., Dekker, J., van Oudenaarden, A., and van Steensel, B. (2015) Genome-wide maps of nuclear lamina interactions in single human cells, Cell, 163, 134–147.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Shevelyov, Y. Y., and Nurminsky, D. I. (2012) The nuclear lamina as a gene-silencing hub, Curr. Issues Mol. Biol., 14, 27–38.PubMedGoogle Scholar
  86. 86.
    Kosak, S. T., Skok, J. A., Medina, K. L., Riblet, R., Le Beau, M. M., Fisher, A. G., and Singh, H. (2002) Subnuclear compartmentalization of immunoglobulin loci during lymphocyte development, Science, 296, 158–162.PubMedGoogle Scholar
  87. 87.
    Hewitt, S. L., High, F. A., Reiner, S. L., Fisher, A. G., and Merkenschlager, M. (2004) Nuclear repositioning marks the selective exclusion of lineage-inappropriate transcription factor loci during T helper cell differentiation, Eur. J. Immunol., 34, 3604–3613.PubMedGoogle Scholar
  88. 88.
    Zink, D., Amaral, M. D., Englmann, A., Lang, S., Clarke, L. A., Rudolph, C., Alt, F., Luther, K., Braz, C., Sadoni, N., Rosenecker, J., and Schindelhauer, D. (2004) Transcription-dependent spatial arrangements of CFTR and adjacent genes in human cell nuclei, J. Cell Biol., 166, 815–825.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Ragoczy, T., Bender, M. A., Telling, A., Byron, R., and Groudine, M. (2006) The locus control region is required for association of the murine β-globin locus with engaged transcription factories during erythroid maturation, Genes Dev., 20, 1447–1457.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Williams, R. R., Azuara, V., Perry, P., Sauer, S., Dvorkina, M., Jorgensen, H., Roix, J., McQueen, P., Misteli, T., Merkenschlager, M., and Fisher, A. G. (2006) Neural induction promotes large-scale chromatin reorganization of the Mash1 locus, J. Cell Sci., 119, 132–140.PubMedGoogle Scholar
  91. 91.
    Ballester, M., Kress, C., Hue-Beauvais, C., Kieu, K., Lehmann, G., Adenot, P., and Devinoy, E. (2008) The nuclear localization of WAP and CSN genes is modified by lactogenic hormones in HC11 cells, J. Cell Biochem., 105, 262–270.PubMedGoogle Scholar
  92. 92.
    Szczerbal, I., Foster, H. A., and Bridger, J. M. (2009) The spatial repositioning of adipogenesis genes is correlated with their expression status in a porcine mesenchymal stem cell adipogenesis model system, Chromosoma, 118, 647–663.PubMedGoogle Scholar
  93. 93.
    Meister, P., Towbin, B. D., Pike, B. L., Ponti, A., and Gasser, S. M. (2010) The spatial dynamics of tissue-specific promoters during C. elegans development, Genes Dev., 24, 766–782.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Kress, C., Kieu, K., Droineau, S., Galio, L., and Devinoy, E. (2011) Specific positioning of the casein gene cluster in active nuclear domains in luminal mammary epithelial cells, Chromosome Res., 19, 979–997.PubMedGoogle Scholar
  95. 95.
    Lee, H. Y., Johnson, K. D., Boyer, M. E., and Bresnick, E. H. (2011) Relocalizing genetic loci into specific subnuclear neighborhoods, J. Biol. Chem., 286, 18834–18844.PubMedPubMedCentralGoogle Scholar
  96. 96.
    Yao, J., Fetter, R. D., Hu, P., Betzig, E., and Tjian, R. (2011) Subnuclear segregation of genes and core promoter factors in myogenesis, Genes Dev., 25, 569–580.PubMedPubMedCentralGoogle Scholar
  97. 97.
    Demmerle, J., Koch, A. J., and Holaska, J. M. (2013) Emerin and histone deacetylase 3 (HDAC3) cooperatively regulate expression and nuclear positions of MyoD, Myf5, and Pax7 genes during myogenesis, Chromosome Res., 21, 765–779.PubMedGoogle Scholar
  98. 98.
    Zhao, H., Sifakis, E. G., Sumida, N., Millan-Arino, L., Scholz, B. A., Svensson, J. P., Chen, X., Ronnegren, A. L., Mallet de Lima, C. D., Varnoosfaderani, F. S., Shi, C., Loseva, O., Yammine, S., Israelsson, M., Rathje, L. S., Nemeti, B., Fredlund, E., Helleday, T., Imreh, M. P., and Gondor, A. (2015) PARP1-and CTCF-mediated interactions between active and repressed chromatin at the lamina promote oscillating transcription, Mol. Cell, 59, 984–997.PubMedGoogle Scholar
  99. 99.
    Tumbar, T., and Belmont, A. S. (2001) Interphase movements of a DNA chromosome region modulated by VP16 transcriptional activator, Nat. Cell Biol., 3, 134–139.PubMedGoogle Scholar
  100. 100.
    Chuang, C. H., Carpenter, A. E., Fuchsova, B., Johnson, T., de Lanerolle, P., and Belmont, A. S. (2006) Long-range directional movement of an interphase chromosome site, Curr. Biol., 16, 825–831.PubMedGoogle Scholar
  101. 101.
    Therizols, P., Illingworth, R. S., Courilleau, C., Boyle, S., Wood, A. J., and Bickmore, W. A. (2014) Chromatin decondensation is sufficient to alter nuclear organization in embryonic stem cells, Science, 346, 1238–1242.PubMedGoogle Scholar
  102. 102.
    Finlan, L. E., Sproul, D., Thomson, I., Boyle, S., Kerr, E., Perry, P., Ylstra, B., Chubb, J. R., and Bickmore, W. A. (2008) Recruitment to the nuclear periphery can alter expression of genes in human cells, PLoS Genet., 4, e1000039.PubMedPubMedCentralGoogle Scholar
  103. 103.
    Reddy, K. L., Zullo, J. M., Bertolino, E., and Singh, H. (2008) Transcriptional repression mediated by repositioning of genes to the nuclear lamina, Nature, 452, 243–247.PubMedGoogle Scholar
  104. 104.
    Dialynas, G., Speese, S., Budnik, V., Geyer, P. K., and Wallrath, L. L. (2010) The role of Drosophila lamin C in muscle function and gene expression, Development, 137, 3067–3077.PubMedPubMedCentralGoogle Scholar
  105. 105.
    Kumaran, R. I., and Spector, D. L. (2008) A genetic locus targeted to the nuclear periphery in living cells maintains its transcriptional competence, J. Cell Biol., 180, 51–65.PubMedPubMedCentralGoogle Scholar
  106. 106.
    Gierman, H. J., Indemans, M. H. G., Koster, J., Goetze, S., Seppen, J., Geerts, D., van Driel, R., and Versteeg, R. (2007) Domain-wide regulation of gene expression in the human genome, Genome Res., 17, 1286–1295.PubMedPubMedCentralGoogle Scholar
  107. 107.
    Babenko, V. N., Makunin, I. V., Brusentsova, I. V., Belyaeva, E. S., Maksimov, D. A., Belyakin, S. N., Maroy, P., Vasil’eva, L. A., and Zhimulev, I. F. (2010) Paucity and preferential suppression of transgenes in late replication domains of the D. melanogaster genome, BMC Genomics, 11, 318.PubMedPubMedCentralGoogle Scholar
  108. 108.
    Akhtar, W., de Jong, J., Pindyurin, A. V., Pagie, L., Meuleman, W., de Ridder, J., Berns, A., Wessels, L. F., van Lohuizen, M., and van Steensel, B. (2013) Chromatin position effects assayed by thousands of reporters integrated in parallel, Cell, 154, 914–927.PubMedGoogle Scholar
  109. 109.
    Kim, Y., Sharov, A. A., McDole, K., Cheng, M., Hao, H., Fan, C. M., Gaiano, N., Ko, M. S., and Zheng, Y. (2011) Mouse B-type lamins are required for proper organogenesis but not by embryonic stem cells, Science, 334, 1706–1710.PubMedPubMedCentralGoogle Scholar
  110. 110.
    Amendola, M., and van Steensel, B. (2015) Nuclear lamins are not required for lamina-associated domain organization in mouse embryonic stem cells, EMBO Rep., 16, 610–617.PubMedPubMedCentralGoogle Scholar
  111. 111.
    Chintapalli, V. R., Wang, J., and Dow, J. A. (2007) Using FlyAtlas to identify better Drosophila melanogaster models of human disease, Nat. Genet., 39, 715–720.PubMedGoogle Scholar
  112. 112.
    Chang, C. W., Cheng, W. C., Chen, C. R., Shu, W. Y., Tsai, M. L., Huang, C. L., and Hsu, I. C. (2011) Identification of human housekeeping genes and tissue-selective genes by microarray meta-analysis, PLoS One, 6, e22859.PubMedPubMedCentralGoogle Scholar
  113. 113.
    Graveley, B. R., Brooks, A. N., Carlson, J. W., Duff, M. O., Landolin, J. M., Yang, L., Artieri, C. G., van Baren, M. J., Boley, N., Booth, B. W., Brown, J. B., Cherbas, L., Davis, C. A., Dobin, A., Li, R., Lin, W., Malone, J. H., Mattiuzzo, N. R., Miller, D., Sturgill, D., Tuch, B. B., Zaleski, C., Zhang, D., Blanchette, M., Dudoit, S., Eads, B., Green, R. E., Hammonds, A., Jiang, L., Kapranov, P., Langton, L., Perrimon, N., Sandler, J. E., Wan, K. H., Willingham, A., Zhang, Y., Zou, Y., Andrews, J., Bickel, P. J., Brenner, S. E., Brent, M. R., Cherbas, P., Gingeras, T. R., Hoskins, R. A., Kaufman, T. C., Oliver, B., and Celniker, S. E. (2011) The developmental transcriptome of Drosophila melanogaster, Nature, 471, 473–479.PubMedGoogle Scholar
  114. 114.
    Wu, F., and Yao, J. (2017) Identifying novel transcriptional and epigenetic features of nuclear lamina-associated genes, Sci. Rep., 7, 100.PubMedPubMedCentralGoogle Scholar
  115. 115.
    Liu, J., Rolef Ben-Shahar, T., Riemer, D., Treinin, M., Spann, P., Weber, K., Fire, A., and Gruenbaum, Y. (2000) Essential roles for Caenorhabditis elegans lamin gene in nuclear organization, cell cycle progression, and spatial organization of nuclear pore complexes, Mol. Biol. Cell, 11, 3937–3947.PubMedGoogle Scholar
  116. 116.
    Vergnes, L., Peterfy, M., Bergo, M. O., Young, S. G., and Reue, K. (2004) Lamin B1 is required for mouse development and nuclear integrity, Proc. Natl. Acad. Sci. USA, 101, 10428–10433.PubMedPubMedCentralGoogle Scholar
  117. 117.
    Wagner, N., Weber, D., Seitz, S., and Krohne, G. (2004). The lamin B receptor of Drosophila melanogaster, J. Cell Sci., 117 (Pt. 10), 2015–2028.Google Scholar
  118. 118.
    Coffinier, C., Jung, H. J., Nobumori, C., Chang, S., Tu, Y., Barnes, R. H., 2nd, Yoshinaga, Y., de Jong, P. J., Vergnes, L., Reue, K., Fong, L. G., and Young, S. G. (2011) Deficiencies in lamin B1 and lamin B2 cause neu-rodevelopmental defects and distinct nuclear shape abnormalities in neurons, Mol. Biol. Cell, 22, 4683–4693.PubMedPubMedCentralGoogle Scholar
  119. 119.
    Kim, Y., McDole, K., and Zheng, Y. (2012) The function of lamins in the context of tissue building and maintenance, Nucleus, 3, 256–262.PubMedPubMedCentralGoogle Scholar
  120. 120.
    Guo, Y., and Zheng, Y. (2015) Lamins position the nuclear pores and centrosomes by modulating dynein, Mol. Biol. Cell, 26, 3379–3389.PubMedPubMedCentralGoogle Scholar
  121. 121.
    Milon, B., Sun, Y., Chang, W., Creasy, T., Mahurkar, A., Shetty, A., Nurminsky, D., and Nurminskaya, M. (2014) Map of open and closed chromatin domains in Drosophila genome, BMC Genomics, 15, 988.PubMedPubMedCentralGoogle Scholar
  122. 122.
    Boettiger, A. N., Bintu, B., Moffitt, J. R., Wang, S., Beliveau, B. J., Fudenberg, G., Imakaev, M., Mirny, L. A., Wu, C. T., and Zhuang, X. (2016) Super-resolution imaging reveals distinct chromatin folding for different epigenetic states, Nature, 529, 418–422.PubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Molecular GeneticsRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Gene BiologyRussian Academy of SciencesMoscowRussia
  3. 3.Lomonosov Moscow State UniversityFaculty of BiologyMoscowRussia

Personalised recommendations