Skip to main content
Log in

The Role of Chromosome–Nuclear Envelope Attachments in 3D Genome Organization

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Chromosomes are intricately folded and packaged in the cell nucleus and interact with the nuclear envelope. This complex nuclear architecture has a profound effect on how the genome works and how the cells function. The main goal of review is to highlight recent studies on the effect of chromosome–nuclear envelope interactions on chromatin folding and function in the nucleus. The data obtained suggest that chromosome–nuclear envelope attachments are important for the organization of nuclear architecture in various organisms. A combination of experimental cell biology methods with computational modeling offers a unique opportunity to explore the fundamental relationships between different aspects of 3D genome organization in greater details. This powerful interdisciplinary approach could reveal how the organization and function of the genome in the nuclear space is affected by the chromosome–nuclear envelope attachments and will enable the development of novel approaches to regulate gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Chr:

chromosome

DamID:

DNA adenine methyltransferase identification

FISH:

fluorescence in situ hybridization

Hi-C:

chromosome conformation capture

LAD:

lamina-associated domain

NE:

nuclear envelope

TAD:

topologically associated domain

References

  1. Lemaitre, C., and Bickmore, W. A. (2015) Chromatin at the nuclear periphery and the regulation of genome functions, Histochem. Cell Biol., 144, 111–122.

    Article  CAS  PubMed  Google Scholar 

  2. Ciabrelli, F., and Cavalli, G. (2015) Chromatin-driven behavior of topologically associating domains, J. Mol. Biol., 427, 608–625.

    Article  CAS  PubMed  Google Scholar 

  3. Barton, L. J., Soshnev, A. A., and Geyer, P. K. (2015) Networking in the nucleus: a spotlight on LEM-domain proteins, Curr. Opin. Cell Biol., 34, 1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nguyen, H. Q., and Bosco, G. (2015) Gene positioning effects on expression in eukaryotes, Annu. Rev. Genet., 49, 627–646.

    Article  CAS  PubMed  Google Scholar 

  5. Grosberg, A. Y., Nechaev, S. K., and Shakhnovich, E. I. (1988) The role of topological constraints in the kinetics of collapse of macromolecules, J. Phys. (Paris), 49, 2095–2100.

    Article  CAS  Google Scholar 

  6. Lebedev, D. V., Filatov, M. V., Kuklin, A. I., Islamov, A. K., Kentzinger, E., Pantina, R., Toperverg, B. P., and Isaev-Ivanov, V. V. (2005) Fractal nature of chromatin organization in interphase chicken erythrocyte nuclei: DNA structure exhibits biphasic fractal properties, FEBS Lett., 579, 1465–1468.

    Article  CAS  PubMed  Google Scholar 

  7. Gursoy, G., Xu, Y., Kenter, A. L., and Liang, J. (2014) Spatial confinement is a major determinant of the folding landscape of human chromosomes, Nucleic Acids Res., 42, 8223–8230.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mateos-Langerak, J., Bohn, M., de Leeuw, W., Giromus, O., Manders, E. M., Verschure, P. J., Indemans, M. H., Gierman, H. J., Heermann, D. W., van Driel, R., and Goetze, S. (2009) Spatially confined folding of chromatin in the interphase nucleus, Proc. Natl. Acad. Sci. USA, 106, 3812–3817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pickersgill, H., Kalverda, B., de Wit, E., Talhout, W., Fornerod, M., and van Steensel, B. (2006) Characterization of the Drosophila melanogaster genome at the nuclear lamina, Nat. Genet., 38, 1005–1014.

    Article  CAS  PubMed  Google Scholar 

  10. Guelen, L., Pagie, L., Brasset, E., Meuleman, W., Faza, M. B., Talhout, W., Eussen, B. H., de Klein, A., Wessels, L., de Laat, W., and van Steensel, B. (2008) Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions, Nature, 453, 948–951.

    Article  CAS  PubMed  Google Scholar 

  11. Hochstrasser, M., Mathog, D., Gruenbaum, Y., Saumweber, H., and Sedat, J. W. (1986) Spatial organization of chromosomes in the salivary gland nuclei of Drosophila melanogaster, J. Cell. Biol., 102, 112–123.

    Article  CAS  PubMed  Google Scholar 

  12. Gonzalez-Sandoval, A., and Gasser, S. M. (2016) On TADs and LADs: spatial control over gene expression, Trends Genet., 32, 485–495.

    Article  CAS  PubMed  Google Scholar 

  13. Van Bemmel, J. G., Pagie, L., Braunschweig, U., Brugman, W., Meuleman, W., Kerkhoven, R. M., and van Steensel, B. (2010) The insulator protein SU(HW) fine-tunes nuclear lamina interactions of the Drosophila genome, PLoS One, 5, e15013.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Shevelyov, Y. Y., Lavrov, S. A., Mikhaylova, L. M., Nurminsky, I. D., Kulathinal, R. J., Egorova, K. S., Rozovsky, Y. M., and Nurminsky, D. I. (2009) The B-type lamin is required for somatic repression of testis-specific gene clusters, Proc. Natl. Acad. Sci. USA, 106, 3282–3287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kohwi, M., Lupton, J. R., Lai, S. L., Miller, M. R., and Doe, C. Q. (2013) Developmentally regulated subnuclear genome reorganization restricts neural progenitor competence in Drosophila, Cell, 152, 97–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Amendola, M., and van Steensel, B. (2015) Nuclear lamins are not required for lamina-associated domain organization in mouse embryonic stem cells, EMBO Rep., 16, 610–617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hochstrasser, M., and Sedat, J. W. (1987) Three-dimensional organization of Drosophila melanogaster interphase nuclei. II. Chromosome spatial organization and gene regulation, J. Cell Biol., 104, 1471–1483.

    Article  CAS  PubMed  Google Scholar 

  18. Hochstrasser, M., and Sedat, J. W. (1987) Three-dimensional organization of Drosophila melanogaster interphase nuclei. I. Tissue-specific aspects of polytene nuclear architecture, J. Cell Biol., 104, 1455–1470.

    Article  CAS  PubMed  Google Scholar 

  19. Chen, H., Zheng, X., and Zheng, Y. (2014) Age-associated loss of lamin-B leads to systemic inflammation and gut hyperplasia, Cell, 159, 829–843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cremer, T., and Cremer, M. (2010) Chromosome territories, Cold Spring Harb. Perspect. Biol., 2, a003889.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Cremer, T., and Cremer, C. (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells, Nat. Rev. Genet., 2, 292–301.

    CAS  PubMed  Google Scholar 

  22. Bauer, C. R., Hartl, T. A., and Bosco, G. (2012) Condensin II promotes the formation of chromosome territories by inducing axial compaction of polyploid interphase chromosomes, PLoS Genet., 8, e1002873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mathog, D., Hochstrasser, M., Gruenbaum, Y., Saumweber, H., and Sedat, J. (1984) Characteristic folding pattern of polytene chromosomes in Drosophila salivary gland nuclei, Nature, 308, 414–421.

    Article  CAS  PubMed  Google Scholar 

  24. Lieberman-Aiden, E., van Berkum, N. L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B. R., Sabo, P. J., Dorschner, M. O., Sandstrom, R., Bernstein, B., Bender, M. A., Groudine, M., Gnirke, A., Stamatoyannopoulos, J., Mirny, L. A., Lander, E. S., and Dekker, J. (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome, Science, 326, 289–293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sexton, T., Yaffe, E., Kenigsberg, E., Bantignies, F., Leblanc, B., Hoichman, M., Parrinello, H., Tanay, A., and Cavalli, G. (2012) Three-dimensional folding and functional organization principles of the Drosophila genome, Cell, 148, 458–472.

    Article  CAS  PubMed  Google Scholar 

  26. Ulianov, S. V., Khrameeva, E. E., Gavrilov, A. A., Flyamer, I. M., Kos, P., Mikhaleva, E. A., Penin, A. A., Logacheva, M. D., Imakaev, M. V., Chertovich, A., Gelfand, M. S., Shevelyov, Y. Y., and Razin, S. V. (2016) Active chromatin and transcription play a key role in chromosome partitioning into topologically associating domains, Genome Res., 26, 70–84.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Battulin, N., Fishman, V. S., Mazur, A. M., Pomaznoy, M., Khabarova, A. A., Afonnikov, D. A., Prokhortchouk, E. B., and Serov, O. L. (2015) Comparison of the three-dimensional organization of sperm and fibroblast genomes using the Hi-C approach, Genome Biol., 16, 77.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Dixon, J. R., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., Hu, M., Liu, J. S., and Ren, B. (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions, Nature, 485, 376–380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ong, C. T., and Corces, V. G. (2014) CTCF: an architectural protein bridging genome topology and function, Nat. Rev. Genet., 15, 234–246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cmarko, D., Verschure, P. J., Martin, T. E., Dahmus, M. E., Krause, S., Fu, X. D., van Driel, R., and Fakan, S. (1999) Ultrastructural analysis of transcription and splicing in the cell nucleus after bromo-UTP microinjection, Mol. Biol. Cell, 10, 211–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Eagen, K. P., Hartl, T. A., and Kornberg, R. D. (2015) Stable chromosome condensation revealed by chromosome conformation capture, Cell, 163, 934–946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Filion, G. J., van Bemmel, J. G., Braunschweig, U., Talhout, W., Kind, J., Ward, L. D., Brugman, W., de Castro, I. J., Kerkhoven, R. M., Bussemaker, H. J., and van Steensel, B. (2010) Systematic protein location mapping reveals five principal chromatin types in Drosophila cells, Cell, 143, 212–224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kharchenko, P. V., Alekseyenko, A. A., Schwartz, Y. B., Minoda, A., Riddle, N. C., Ernst, J., Sabo, P. J., Larschan, E., Gorchakov, A. A., Gu, T., Linder-Basso, D., Plachetka, A., Shanover, G., Tolstorukov, M. Y., Luquette, L. J., Xi, R., Jung, Y. L., Park, R. W., Bishop, E. P., Canfield, T. K., Sandstrom, R., Thurman, R. E., MacAlpine, D. M., Stamatoyannopoulos, J. A., Kellis, M., Elgin, S. C., Kuroda, M. I., Pirrotta, V., Karpen, G. H., and Park, P. J. (2011) Comprehensive analysis of the chromatin landscape in Drosophila melanogaster, Nature, 471, 480–485.

    Article  CAS  PubMed  Google Scholar 

  34. Osborne, C. S., Chakalova, L., Brown, K. E., Carter, D., Horton, A., Debrand, E., Goyenechea, B., Mitchell, J. A., Lopes, S., Reik, W., and Fraser, P. (2004) Active genes dynamically colocalize to shared sites of ongoing transcription, Nat. Genet., 36, 1065–1071.

    Article  CAS  PubMed  Google Scholar 

  35. Cheutin, T., and Cavalli, G. (2012) Progressive polycomb assembly on H3K27me3 compartments generates polycomb bodies with developmentally regulated motion, PLoS Genet., 8, e1002465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li, H. B., Ohno, K., Gui, H., and Pirrotta, V. (2013) Insulators target active genes to transcription factories and polycomb-repressed genes to polycomb bodies, PLoS Genet., 9, e1003436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Finlan, L. E., Sproul, D., Thomson, I., Boyle, S., Kerr, E., Perry, P., Ylstra, B., Chubb, J. R., and Bickmore, W. A. (2008) Recruitment to the nuclear periphery can alter expression of genes in human cells, PLoS Genet., 4, e1000039.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Reddy, K. L., Zullo, J. M., Bertolino, E., and Singh, H. (2008) Transcriptional repression mediated by repositioning of genes to the nuclear lamina, Nature, 452, 243–247.

    Article  CAS  PubMed  Google Scholar 

  39. Henikoff, S., and Dreesen, T. D. (1989) Trans-inactivation of the Drosophila brown gene: evidence for transcriptional repression and somatic pairing dependence, Proc. Natl. Acad. Sci. USA, 86, 6704–6708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tolhuis, B., Blom, M., Kerkhoven, R. M., Pagie, L., Teunissen, H., Nieuwland, M., Simonis, M., de Laat, W., van Lohuizen, M., and van Steensel, B. (2011) Interactions among Polycomb domains are guided by chromosome architecture, PLoS Genet., 7, e1001343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bantignies, F., Roure, V., Comet, I., Leblanc, B., Schuettengruber, B., Bonnet, J., Tixier, V., Mas, A., and Cavalli, G. (2011) Polycomb-dependent regulatory contacts between distant Hox loci in Drosophila, Cell, 144, 214–226.

    Article  CAS  PubMed  Google Scholar 

  42. Denholtz, M., Bonora, G., Chronis, C., Splinter, E., de Laat, W., Ernst, J., Pellegrini, M., and Plath, K. (2013) Long-range chromatin contacts in embryonic stem cells reveal a role for pluripotency factors and polycomb proteins in genome organization, Cell Stem Cell, 13, 602–616.

    Article  CAS  PubMed  Google Scholar 

  43. Papantonis, A., Kohro, T., Baboo, S., Larkin, J. D., Deng, B., Short, P., Tsutsumi, S., Taylor, S., Kanki, Y., Kobayashi, M., Li, G., Poh, H. M., Ruan, X., Aburatani, H., Ruan, Y., Kodama, T., Wada, Y., and Cook, P. R. (2012) TNFalpha signals through specialized factories where responsive coding and miRNA genes are transcribed, EMBO J., 31, 4404–4414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schoenfelder, S., Sexton, T., Chakalova, L., Cope, N. F., Horton, A., Andrews, S., Kurukuti, S., Mitchell, J. A., Umlauf, D., Dimitrova, D. S., Eskiw, C. H., Luo, Y., Wei, C. L., Ruan, Y., Bieker, J. J., and Fraser, P. (2010) Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells, Nat. Genet., 42, 53–61.

    Article  CAS  PubMed  Google Scholar 

  45. Kind, J., Pagie, L., Ortabozkoyun, H., Boyle, S., de Vries, S. S., Janssen, H., Amendola, M., Nolen, L. D., Bickmore, W. A., and van Steensel, B. (2013) Single-cell dynamics of genome–nuclear lamina interactions, Cell, 153, 178–192.

    Article  CAS  PubMed  Google Scholar 

  46. Kinney, N. A., Onufriev, A. V., and Sharakhov, I. V. (2015) Quantified effects of chromosome–nuclear envelope attachments on 3D organization of chromosomes, Nucleus, 6, 212–224.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Chubb, J. R., Boyle, S., Perry, P., and Bickmore, W. A. (2002) Chromatin motion is constrained by association with nuclear compartments in human cells, Curr. Biol., 12, 439–445.

    Article  CAS  PubMed  Google Scholar 

  48. Hubner, M., and Spector, D. (2010) Chromatin dynamics, Annu. Rev. Biophys., 39, 471–489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Agmon, N., Liefshitz, B., Zimmer, C., Fabre, E., and Kupiec, M. (2013) Effect of nuclear architecture on the efficiency of double-strand break repair, Nat. Cell Biol., 15, 694–699.

    Article  CAS  PubMed  Google Scholar 

  50. Sexton, T., and Cavalli, G. (2015) The role of chromosome domains in shaping the functional genome, Cell, 160, 1049–1059.

    Article  CAS  PubMed  Google Scholar 

  51. Fanucchi, S., Shibayama, Y., Burd, S., Weinberg, M. S., and Mhlanga, M. M. (2013) Chromosomal contact permits transcription between coregulated genes, Cell, 155, 606–620.

    Article  CAS  PubMed  Google Scholar 

  52. Hartl, T. A., Smith, H. F., and Bosco, G. (2008) Chromosome alignment and transvection are antagonized by condensin II, Science, 322, 1384–1387.

    Article  CAS  PubMed  Google Scholar 

  53. Zhimulev, I. F. (1996) Morphology and structure of polytene chromosomes, in Advances in Genetics (Hall, J. C., ed.) Vol. 34, Academic Press, San Diego, pp. 1–490.

    Google Scholar 

  54. Demakov, S. A., Vatolina, T. Yu., Babenko, V. N., Semeshin, V. F., Belyaeva, E. S., and Zhimulev, I. F. (2011) Protein composition of interband regions in polytene and cell line chromosomes of Drosophila melanogaster, BMC Genom., 12, 566.

    Article  CAS  Google Scholar 

  55. Belyaeva, E. S., Goncharov, F. P., Demakova, O. V., Kolesnikova, T. D., Boldyreva, L. V., Semeshin, V. F., and Zhimulev, I. F. (2012) Late replication domains in polytene and non-polytene cells of Drosophila melanogaster, PLoS One, 7, e30035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Vatolina, T. Y., Boldyreva, L. V., Demakova, O. V., Demakov, S. A., Kokoza, E. B., Semeshin, V. F., Babenko, V. N., Goncharov, F. P., Belyaeva, E. S., and Zhimulev, I. F. (2011) Identical functional organization of nonpolytene and polytene chromosomes in Drosophila melanogaster, PLoS One, 6, e25960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhimulev, I. F., Zykova, T. Y., Goncharov, F. P., Khoroshko, V. A., Demakova, O. V., Semeshin, V. F., Pokholkova, G. V., Boldyreva, L. V., Demidova, D. S., Babenko, V. N., Demakov, S. A., and Belyaeva, E. S. (2014) Genetic organization of interphase chromosome bands and interbands in Drosophila melanogaster, PLoS One, 9, e101631.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Mathog, D., and Sedat, J. W. (1989) The three-dimensional organization of polytene nuclei in male Drosophila melanogaster with compound XY or ring X chromosomes, Genetics, 121, 293–311.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Sharakhov, I. V., Sharakhova, M. V., Mbogo, C. M., Koekemoer, L. L., and Yan, G. (2001) Linear and spatial organization of polytene chromosomes of the African malaria mosquito Anopheles funestus, Genetics, 159, 211–218.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Sharakhova, M. V., George, P., Brusentsova, I. V., Leman, S. C., Bailey, J. A., Smith, C. D., and Sharakhov, I. V. (2010) Genome mapping and characterization of the Anopheles gambiae heterochromatin, BMC Genom., 11, 459.

    Article  Google Scholar 

  61. Beliveau, B. J., Joyce, E. F., Apostolopoulos, N., Yilmaz, F., Fonseka, C. Y., McCole, R. B., Chang, Y., Li, J. B., Senaratne, T. N., Williams, B. R., Rouillard, J. M., and Wu, C. T. (2012) Versatile design and synthesis platform for visualizing genomes with Oligopaint FISH probes, Proc. Natl. Acad. Sci. USA, 109, 21301–21306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cremer, M., Kupper, K., Wagler, B., Wizelman, L., von Hase, J., Weiland, Y., Kreja, L., Diebold, J., Speicher, M. R., and Cremer, T. (2003) Inheritance of gene density-related higher order chromatin arrangements in normal and tumor cell nuclei, J. Cell Biol., 162, 809–820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Artemov, G., Bondarenko, S., Sapunov, G., and Stegniy, V. (2015) Tissue-specific differences in the spatial interposition of X-chromosome and 3R chromosome regions in the malaria mosquito Anopheles messeae Fall, PLoS One, 10, e0115281.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Stegnii, V. N. (1987) Systemic reorganization of the architectonics of polytene chromosomes in the onto-and phylogenesis of malaria mosquitoes, Genetika, 23, 821–827.

    CAS  PubMed  Google Scholar 

  65. Bondarenko, S. M., Artemov, G. N., Sharakhov, I. V., and Stegniy, V. N. (2017) Tissue-specific features of the X chromosome and nucleolus spatial dynamics in a malaria mosquito, Anopheles atroparvus, PLoS One, 12, e0171290.

    Article  PubMed  Google Scholar 

  66. Stegnii, V. N. (1979) Reorganization of the structure of interphase nuclei during the onto-and phylogeny of malaria mosquitoes, Dokl. Akad. Nauk. SSSR, 249, 1231–1234.

    CAS  PubMed  Google Scholar 

  67. Stegnii, V. N., and Sharakhova, M. V. (1991) Systemic reorganization of the architechtonics of polytene chromosomes in onto-and phylogenesis of malaria mosquitoes. Structural features regional of chromosomal adhesion to the nuclear membrane, Genetika, 27, 828–835.

    CAS  PubMed  Google Scholar 

  68. Ollion, J., Cochennec, J., Loll, F., Escude, C., and Boudier, T. (2013) TANGO: a generic tool for high-throughput 3D image analysis for studying nuclear organization, Bioinformatics, 29, 1840–1841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Stegnii, V. N. (1987) Systemic reorganization of the archi-tectonics of polytene chromosomes in the onto-and phylogenesis of malarial mosquitoes. II. Species specificity in the pattern of chromosome relations with the nuclear envelope of nutrient ovarian cells, Genetika, 23, 1194–1199.

    CAS  PubMed  Google Scholar 

  70. Pombi, M., Caputo, B., Simard, F., Di Deco, M. A., Coluzzi, M., della Torre, A., Costantini, C., Besansky, N. J., and Petrarca, V. (2008) Chromosomal plasticity and evolutionary potential in the malaria vector Anopheles gambiae sensu stricto: insights from three decades of rare paracentric inversions, BMC Evol. Biol., 8, 309.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Pevzner, P., and Tesler, G. (2003) Human and mouse genomic sequences reveal extensive breakpoint reuse in mammalian evolution, Proc. Natl. Acad. Sci. USA, 100, 7672–7677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Alekseyev, M. A. (2008) Multi-break rearrangements and breakpoint re-uses: from circular to linear genomes, J. Comput. Biol., 15, 1117–1131.

    Article  CAS  PubMed  Google Scholar 

  73. Gandhi, M., Evdokimova, V., and Nikiforov, Y. E. (2010) Mechanisms of chromosomal rearrangements in solid tumors: the model of papillary thyroid carcinoma, Mol. Cell Endocrinol., 321, 36–43.

    Article  CAS  PubMed  Google Scholar 

  74. Marshall, W. F. (2002) Order and disorder in the nucleus, Curr. Biol., 12, R185–192.

    Article  CAS  PubMed  Google Scholar 

  75. Folle, G. A. (2008) Nuclear architecture, chromosome domains and genetic damage, Mutat. Res., 658, 172–183.

    CAS  PubMed  Google Scholar 

  76. Fudenberg, G., Getz, G., Meyerson, M., and Mirny, L. A. (2011) High order chromatin architecture shapes the landscape of chromosomal alterations in cancer, Nat. Biotechnol., 29, 1109–1113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gandhi, M., Medvedovic, M., Stringer, J. R., and Nikiforov, Y. E. (2006) Interphase chromosome folding determines spatial proximity of genes participating in carcinogenic RET/PTC rearrangements, Oncogene, 25, 2360–2366.

    Article  CAS  PubMed  Google Scholar 

  78. Duan, Z., Andronescu, M., Schutz, K., McIlwain, S., Kim, Y. J., Lee, C., Shendure, J., Fields, S., Blau, C. A., and Noble, W. S. (2010) A three-dimensional model of the yeast genome, Nature, 465, 363–367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Khrameeva, E. E., Fudenberg, G., Gelfand, M. S., and Mirny, L. A. (2016) History of chromosome rearrangements reflects the spatial organization of yeast chromosomes, J. Bioinform. Comput. Biol., 14, 1641002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Cheutin, T., Bantignies, F., Leblanc, B., and Cavalli, G. (2010) Chromatin folding: from linear chromosomes to the 4D nucleus, Cold Spring Harb. Symp. Quant. Biol., 75, 461–473.

    Article  CAS  PubMed  Google Scholar 

  81. Peric-Hupkes, D., and van Steensel, B. (2010) Role of the nuclear lamina in genome organization and gene expression, Cold Spring Harb. Symp. Quant. Biol., 75, 517–524.

    Article  CAS  PubMed  Google Scholar 

  82. Nagano, T., Lubling, Y., Stevens, T. J., Schoenfelder, S., Yaffe, E., Dean, W., Laue, E. D., Tanay, A., and Fraser, P. (2013) Single-cell Hi-C reveals cell-to-cell variability in chromosome structure, Nature, 502, 59–64.

    Article  CAS  PubMed  Google Scholar 

  83. Mirny, L. A. (2011) The fractal globule as a model of chromatin architecture in the cell, Chromosome Res., 19, 37–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhang, B., and Wolynes, P. G. (2015) Topology, structures, and energy landscapes of human chromosomes, Proc. Natl. Acad. Sci. USA, 112, 6062–6067.

    Article  CAS  PubMed  Google Scholar 

  85. Li, Q. J., Tjong, H., Li, X., Gong, K., Zhou, X. J., Chiolo, I., and Alber, F. (2017) The three-dimensional genome organization of Drosophila melanogaster through data integration, Genome Biol., 18, 145.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Cook, P. R., and Marenduzzo, D. (2009) Entropic organization of interphase chromosomes, J. Cell Biol., 186, 825–834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Mirny, L. (2011) The fractal globule as a model of chromatin architecture in the cell, Chromosome Res., 19, 37–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wong, H., Marie-Nelly, H., Herbert, S., Carrivain, P., Blanc, H., Koszul, R., Fabre, E., and Zimmer, C. (2012) A predictive computational model of the dynamic 3D interphase yeast nucleus, Curr. Biol., 22, 1881–1890.

    Article  CAS  PubMed  Google Scholar 

  89. Wong, H., Arbona, J. M., and Zimmer, C. (2013) How to build a yeast nucleus, Nucleus, 4, 361–366

    Article  PubMed  PubMed Central  Google Scholar 

  90. Rowley, M. J., and Corces, V. G. (2016) The three-dimensional genome: principles and roles of long-distance interactions, Curr. Opin. Cell Biol., 40, 8–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kinney, N., Sharakhov, I. V., and Onufriev, A. V. (2014) Investigation of the chromosome regions with significant affinity for the nuclear envelope in fruit fly–a model-based approach, PLoS One, 9, e91943.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Sharakhov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharakhov, I.V., Bondarenko, S.M., Artemov, G.N. et al. The Role of Chromosome–Nuclear Envelope Attachments in 3D Genome Organization. Biochemistry Moscow 83, 350–358 (2018). https://doi.org/10.1134/S0006297918040065

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297918040065

Keywords

Navigation