Biochemistry (Moscow)

, Volume 83, Issue 4, pp 350–358 | Cite as

The Role of Chromosome–Nuclear Envelope Attachments in 3D Genome Organization

  • I. V. Sharakhov
  • S. M. Bondarenko
  • G. N. Artemov
  • A. V. Onufriev


Chromosomes are intricately folded and packaged in the cell nucleus and interact with the nuclear envelope. This complex nuclear architecture has a profound effect on how the genome works and how the cells function. The main goal of review is to highlight recent studies on the effect of chromosome–nuclear envelope interactions on chromatin folding and function in the nucleus. The data obtained suggest that chromosome–nuclear envelope attachments are important for the organization of nuclear architecture in various organisms. A combination of experimental cell biology methods with computational modeling offers a unique opportunity to explore the fundamental relationships between different aspects of 3D genome organization in greater details. This powerful interdisciplinary approach could reveal how the organization and function of the genome in the nuclear space is affected by the chromosome–nuclear envelope attachments and will enable the development of novel approaches to regulate gene expression.


chromosomes Drosophila nuclear architecture nuclear envelope mosquitoes modeling 





DNA adenine methyltransferase identification


fluorescence in situ hybridization


chromosome conformation capture


lamina-associated domain


nuclear envelope


topologically associated domain


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lemaitre, C., and Bickmore, W. A. (2015) Chromatin at the nuclear periphery and the regulation of genome functions, Histochem. Cell Biol., 144, 111–122.CrossRefPubMedGoogle Scholar
  2. 2.
    Ciabrelli, F., and Cavalli, G. (2015) Chromatin-driven behavior of topologically associating domains, J. Mol. Biol., 427, 608–625.CrossRefPubMedGoogle Scholar
  3. 3.
    Barton, L. J., Soshnev, A. A., and Geyer, P. K. (2015) Networking in the nucleus: a spotlight on LEM-domain proteins, Curr. Opin. Cell Biol., 34, 1–8.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Nguyen, H. Q., and Bosco, G. (2015) Gene positioning effects on expression in eukaryotes, Annu. Rev. Genet., 49, 627–646.CrossRefPubMedGoogle Scholar
  5. 5.
    Grosberg, A. Y., Nechaev, S. K., and Shakhnovich, E. I. (1988) The role of topological constraints in the kinetics of collapse of macromolecules, J. Phys. (Paris), 49, 2095–2100.CrossRefGoogle Scholar
  6. 6.
    Lebedev, D. V., Filatov, M. V., Kuklin, A. I., Islamov, A. K., Kentzinger, E., Pantina, R., Toperverg, B. P., and Isaev-Ivanov, V. V. (2005) Fractal nature of chromatin organization in interphase chicken erythrocyte nuclei: DNA structure exhibits biphasic fractal properties, FEBS Lett., 579, 1465–1468.CrossRefPubMedGoogle Scholar
  7. 7.
    Gursoy, G., Xu, Y., Kenter, A. L., and Liang, J. (2014) Spatial confinement is a major determinant of the folding landscape of human chromosomes, Nucleic Acids Res., 42, 8223–8230.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Mateos-Langerak, J., Bohn, M., de Leeuw, W., Giromus, O., Manders, E. M., Verschure, P. J., Indemans, M. H., Gierman, H. J., Heermann, D. W., van Driel, R., and Goetze, S. (2009) Spatially confined folding of chromatin in the interphase nucleus, Proc. Natl. Acad. Sci. USA, 106, 3812–3817.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Pickersgill, H., Kalverda, B., de Wit, E., Talhout, W., Fornerod, M., and van Steensel, B. (2006) Characterization of the Drosophila melanogaster genome at the nuclear lamina, Nat. Genet., 38, 1005–1014.CrossRefPubMedGoogle Scholar
  10. 10.
    Guelen, L., Pagie, L., Brasset, E., Meuleman, W., Faza, M. B., Talhout, W., Eussen, B. H., de Klein, A., Wessels, L., de Laat, W., and van Steensel, B. (2008) Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions, Nature, 453, 948–951.CrossRefPubMedGoogle Scholar
  11. 11.
    Hochstrasser, M., Mathog, D., Gruenbaum, Y., Saumweber, H., and Sedat, J. W. (1986) Spatial organization of chromosomes in the salivary gland nuclei of Drosophila melanogaster, J. Cell. Biol., 102, 112–123.CrossRefPubMedGoogle Scholar
  12. 12.
    Gonzalez-Sandoval, A., and Gasser, S. M. (2016) On TADs and LADs: spatial control over gene expression, Trends Genet., 32, 485–495.CrossRefPubMedGoogle Scholar
  13. 13.
    Van Bemmel, J. G., Pagie, L., Braunschweig, U., Brugman, W., Meuleman, W., Kerkhoven, R. M., and van Steensel, B. (2010) The insulator protein SU(HW) fine-tunes nuclear lamina interactions of the Drosophila genome, PLoS One, 5, e15013.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Shevelyov, Y. Y., Lavrov, S. A., Mikhaylova, L. M., Nurminsky, I. D., Kulathinal, R. J., Egorova, K. S., Rozovsky, Y. M., and Nurminsky, D. I. (2009) The B-type lamin is required for somatic repression of testis-specific gene clusters, Proc. Natl. Acad. Sci. USA, 106, 3282–3287.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kohwi, M., Lupton, J. R., Lai, S. L., Miller, M. R., and Doe, C. Q. (2013) Developmentally regulated subnuclear genome reorganization restricts neural progenitor competence in Drosophila, Cell, 152, 97–108.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Amendola, M., and van Steensel, B. (2015) Nuclear lamins are not required for lamina-associated domain organization in mouse embryonic stem cells, EMBO Rep., 16, 610–617.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Hochstrasser, M., and Sedat, J. W. (1987) Three-dimensional organization of Drosophila melanogaster interphase nuclei. II. Chromosome spatial organization and gene regulation, J. Cell Biol., 104, 1471–1483.CrossRefPubMedGoogle Scholar
  18. 18.
    Hochstrasser, M., and Sedat, J. W. (1987) Three-dimensional organization of Drosophila melanogaster interphase nuclei. I. Tissue-specific aspects of polytene nuclear architecture, J. Cell Biol., 104, 1455–1470.CrossRefPubMedGoogle Scholar
  19. 19.
    Chen, H., Zheng, X., and Zheng, Y. (2014) Age-associated loss of lamin-B leads to systemic inflammation and gut hyperplasia, Cell, 159, 829–843.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Cremer, T., and Cremer, M. (2010) Chromosome territories, Cold Spring Harb. Perspect. Biol., 2, a003889.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Cremer, T., and Cremer, C. (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells, Nat. Rev. Genet., 2, 292–301.PubMedGoogle Scholar
  22. 22.
    Bauer, C. R., Hartl, T. A., and Bosco, G. (2012) Condensin II promotes the formation of chromosome territories by inducing axial compaction of polyploid interphase chromosomes, PLoS Genet., 8, e1002873.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Mathog, D., Hochstrasser, M., Gruenbaum, Y., Saumweber, H., and Sedat, J. (1984) Characteristic folding pattern of polytene chromosomes in Drosophila salivary gland nuclei, Nature, 308, 414–421.CrossRefPubMedGoogle Scholar
  24. 24.
    Lieberman-Aiden, E., van Berkum, N. L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B. R., Sabo, P. J., Dorschner, M. O., Sandstrom, R., Bernstein, B., Bender, M. A., Groudine, M., Gnirke, A., Stamatoyannopoulos, J., Mirny, L. A., Lander, E. S., and Dekker, J. (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome, Science, 326, 289–293.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Sexton, T., Yaffe, E., Kenigsberg, E., Bantignies, F., Leblanc, B., Hoichman, M., Parrinello, H., Tanay, A., and Cavalli, G. (2012) Three-dimensional folding and functional organization principles of the Drosophila genome, Cell, 148, 458–472.CrossRefPubMedGoogle Scholar
  26. 26.
    Ulianov, S. V., Khrameeva, E. E., Gavrilov, A. A., Flyamer, I. M., Kos, P., Mikhaleva, E. A., Penin, A. A., Logacheva, M. D., Imakaev, M. V., Chertovich, A., Gelfand, M. S., Shevelyov, Y. Y., and Razin, S. V. (2016) Active chromatin and transcription play a key role in chromosome partitioning into topologically associating domains, Genome Res., 26, 70–84.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Battulin, N., Fishman, V. S., Mazur, A. M., Pomaznoy, M., Khabarova, A. A., Afonnikov, D. A., Prokhortchouk, E. B., and Serov, O. L. (2015) Comparison of the three-dimensional organization of sperm and fibroblast genomes using the Hi-C approach, Genome Biol., 16, 77.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Dixon, J. R., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., Hu, M., Liu, J. S., and Ren, B. (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions, Nature, 485, 376–380.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ong, C. T., and Corces, V. G. (2014) CTCF: an architectural protein bridging genome topology and function, Nat. Rev. Genet., 15, 234–246.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Cmarko, D., Verschure, P. J., Martin, T. E., Dahmus, M. E., Krause, S., Fu, X. D., van Driel, R., and Fakan, S. (1999) Ultrastructural analysis of transcription and splicing in the cell nucleus after bromo-UTP microinjection, Mol. Biol. Cell, 10, 211–223.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Eagen, K. P., Hartl, T. A., and Kornberg, R. D. (2015) Stable chromosome condensation revealed by chromosome conformation capture, Cell, 163, 934–946.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Filion, G. J., van Bemmel, J. G., Braunschweig, U., Talhout, W., Kind, J., Ward, L. D., Brugman, W., de Castro, I. J., Kerkhoven, R. M., Bussemaker, H. J., and van Steensel, B. (2010) Systematic protein location mapping reveals five principal chromatin types in Drosophila cells, Cell, 143, 212–224.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Kharchenko, P. V., Alekseyenko, A. A., Schwartz, Y. B., Minoda, A., Riddle, N. C., Ernst, J., Sabo, P. J., Larschan, E., Gorchakov, A. A., Gu, T., Linder-Basso, D., Plachetka, A., Shanover, G., Tolstorukov, M. Y., Luquette, L. J., Xi, R., Jung, Y. L., Park, R. W., Bishop, E. P., Canfield, T. K., Sandstrom, R., Thurman, R. E., MacAlpine, D. M., Stamatoyannopoulos, J. A., Kellis, M., Elgin, S. C., Kuroda, M. I., Pirrotta, V., Karpen, G. H., and Park, P. J. (2011) Comprehensive analysis of the chromatin landscape in Drosophila melanogaster, Nature, 471, 480–485.CrossRefPubMedGoogle Scholar
  34. 34.
    Osborne, C. S., Chakalova, L., Brown, K. E., Carter, D., Horton, A., Debrand, E., Goyenechea, B., Mitchell, J. A., Lopes, S., Reik, W., and Fraser, P. (2004) Active genes dynamically colocalize to shared sites of ongoing transcription, Nat. Genet., 36, 1065–1071.CrossRefPubMedGoogle Scholar
  35. 35.
    Cheutin, T., and Cavalli, G. (2012) Progressive polycomb assembly on H3K27me3 compartments generates polycomb bodies with developmentally regulated motion, PLoS Genet., 8, e1002465.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Li, H. B., Ohno, K., Gui, H., and Pirrotta, V. (2013) Insulators target active genes to transcription factories and polycomb-repressed genes to polycomb bodies, PLoS Genet., 9, e1003436.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Finlan, L. E., Sproul, D., Thomson, I., Boyle, S., Kerr, E., Perry, P., Ylstra, B., Chubb, J. R., and Bickmore, W. A. (2008) Recruitment to the nuclear periphery can alter expression of genes in human cells, PLoS Genet., 4, e1000039.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Reddy, K. L., Zullo, J. M., Bertolino, E., and Singh, H. (2008) Transcriptional repression mediated by repositioning of genes to the nuclear lamina, Nature, 452, 243–247.CrossRefPubMedGoogle Scholar
  39. 39.
    Henikoff, S., and Dreesen, T. D. (1989) Trans-inactivation of the Drosophila brown gene: evidence for transcriptional repression and somatic pairing dependence, Proc. Natl. Acad. Sci. USA, 86, 6704–6708.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Tolhuis, B., Blom, M., Kerkhoven, R. M., Pagie, L., Teunissen, H., Nieuwland, M., Simonis, M., de Laat, W., van Lohuizen, M., and van Steensel, B. (2011) Interactions among Polycomb domains are guided by chromosome architecture, PLoS Genet., 7, e1001343.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Bantignies, F., Roure, V., Comet, I., Leblanc, B., Schuettengruber, B., Bonnet, J., Tixier, V., Mas, A., and Cavalli, G. (2011) Polycomb-dependent regulatory contacts between distant Hox loci in Drosophila, Cell, 144, 214–226.CrossRefPubMedGoogle Scholar
  42. 42.
    Denholtz, M., Bonora, G., Chronis, C., Splinter, E., de Laat, W., Ernst, J., Pellegrini, M., and Plath, K. (2013) Long-range chromatin contacts in embryonic stem cells reveal a role for pluripotency factors and polycomb proteins in genome organization, Cell Stem Cell, 13, 602–616.CrossRefPubMedGoogle Scholar
  43. 43.
    Papantonis, A., Kohro, T., Baboo, S., Larkin, J. D., Deng, B., Short, P., Tsutsumi, S., Taylor, S., Kanki, Y., Kobayashi, M., Li, G., Poh, H. M., Ruan, X., Aburatani, H., Ruan, Y., Kodama, T., Wada, Y., and Cook, P. R. (2012) TNFalpha signals through specialized factories where responsive coding and miRNA genes are transcribed, EMBO J., 31, 4404–4414.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Schoenfelder, S., Sexton, T., Chakalova, L., Cope, N. F., Horton, A., Andrews, S., Kurukuti, S., Mitchell, J. A., Umlauf, D., Dimitrova, D. S., Eskiw, C. H., Luo, Y., Wei, C. L., Ruan, Y., Bieker, J. J., and Fraser, P. (2010) Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells, Nat. Genet., 42, 53–61.CrossRefPubMedGoogle Scholar
  45. 45.
    Kind, J., Pagie, L., Ortabozkoyun, H., Boyle, S., de Vries, S. S., Janssen, H., Amendola, M., Nolen, L. D., Bickmore, W. A., and van Steensel, B. (2013) Single-cell dynamics of genome–nuclear lamina interactions, Cell, 153, 178–192.CrossRefPubMedGoogle Scholar
  46. 46.
    Kinney, N. A., Onufriev, A. V., and Sharakhov, I. V. (2015) Quantified effects of chromosome–nuclear envelope attachments on 3D organization of chromosomes, Nucleus, 6, 212–224.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Chubb, J. R., Boyle, S., Perry, P., and Bickmore, W. A. (2002) Chromatin motion is constrained by association with nuclear compartments in human cells, Curr. Biol., 12, 439–445.CrossRefPubMedGoogle Scholar
  48. 48.
    Hubner, M., and Spector, D. (2010) Chromatin dynamics, Annu. Rev. Biophys., 39, 471–489.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Agmon, N., Liefshitz, B., Zimmer, C., Fabre, E., and Kupiec, M. (2013) Effect of nuclear architecture on the efficiency of double-strand break repair, Nat. Cell Biol., 15, 694–699.CrossRefPubMedGoogle Scholar
  50. 50.
    Sexton, T., and Cavalli, G. (2015) The role of chromosome domains in shaping the functional genome, Cell, 160, 1049–1059.CrossRefPubMedGoogle Scholar
  51. 51.
    Fanucchi, S., Shibayama, Y., Burd, S., Weinberg, M. S., and Mhlanga, M. M. (2013) Chromosomal contact permits transcription between coregulated genes, Cell, 155, 606–620.CrossRefPubMedGoogle Scholar
  52. 52.
    Hartl, T. A., Smith, H. F., and Bosco, G. (2008) Chromosome alignment and transvection are antagonized by condensin II, Science, 322, 1384–1387.CrossRefPubMedGoogle Scholar
  53. 53.
    Zhimulev, I. F. (1996) Morphology and structure of polytene chromosomes, in Advances in Genetics (Hall, J. C., ed.) Vol. 34, Academic Press, San Diego, pp. 1–490.Google Scholar
  54. 54.
    Demakov, S. A., Vatolina, T. Yu., Babenko, V. N., Semeshin, V. F., Belyaeva, E. S., and Zhimulev, I. F. (2011) Protein composition of interband regions in polytene and cell line chromosomes of Drosophila melanogaster, BMC Genom., 12, 566.CrossRefGoogle Scholar
  55. 55.
    Belyaeva, E. S., Goncharov, F. P., Demakova, O. V., Kolesnikova, T. D., Boldyreva, L. V., Semeshin, V. F., and Zhimulev, I. F. (2012) Late replication domains in polytene and non-polytene cells of Drosophila melanogaster, PLoS One, 7, e30035.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Vatolina, T. Y., Boldyreva, L. V., Demakova, O. V., Demakov, S. A., Kokoza, E. B., Semeshin, V. F., Babenko, V. N., Goncharov, F. P., Belyaeva, E. S., and Zhimulev, I. F. (2011) Identical functional organization of nonpolytene and polytene chromosomes in Drosophila melanogaster, PLoS One, 6, e25960.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Zhimulev, I. F., Zykova, T. Y., Goncharov, F. P., Khoroshko, V. A., Demakova, O. V., Semeshin, V. F., Pokholkova, G. V., Boldyreva, L. V., Demidova, D. S., Babenko, V. N., Demakov, S. A., and Belyaeva, E. S. (2014) Genetic organization of interphase chromosome bands and interbands in Drosophila melanogaster, PLoS One, 9, e101631.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Mathog, D., and Sedat, J. W. (1989) The three-dimensional organization of polytene nuclei in male Drosophila melanogaster with compound XY or ring X chromosomes, Genetics, 121, 293–311.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Sharakhov, I. V., Sharakhova, M. V., Mbogo, C. M., Koekemoer, L. L., and Yan, G. (2001) Linear and spatial organization of polytene chromosomes of the African malaria mosquito Anopheles funestus, Genetics, 159, 211–218.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Sharakhova, M. V., George, P., Brusentsova, I. V., Leman, S. C., Bailey, J. A., Smith, C. D., and Sharakhov, I. V. (2010) Genome mapping and characterization of the Anopheles gambiae heterochromatin, BMC Genom., 11, 459.CrossRefGoogle Scholar
  61. 61.
    Beliveau, B. J., Joyce, E. F., Apostolopoulos, N., Yilmaz, F., Fonseka, C. Y., McCole, R. B., Chang, Y., Li, J. B., Senaratne, T. N., Williams, B. R., Rouillard, J. M., and Wu, C. T. (2012) Versatile design and synthesis platform for visualizing genomes with Oligopaint FISH probes, Proc. Natl. Acad. Sci. USA, 109, 21301–21306.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Cremer, M., Kupper, K., Wagler, B., Wizelman, L., von Hase, J., Weiland, Y., Kreja, L., Diebold, J., Speicher, M. R., and Cremer, T. (2003) Inheritance of gene density-related higher order chromatin arrangements in normal and tumor cell nuclei, J. Cell Biol., 162, 809–820.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Artemov, G., Bondarenko, S., Sapunov, G., and Stegniy, V. (2015) Tissue-specific differences in the spatial interposition of X-chromosome and 3R chromosome regions in the malaria mosquito Anopheles messeae Fall, PLoS One, 10, e0115281.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Stegnii, V. N. (1987) Systemic reorganization of the architectonics of polytene chromosomes in the onto-and phylogenesis of malaria mosquitoes, Genetika, 23, 821–827.PubMedGoogle Scholar
  65. 65.
    Bondarenko, S. M., Artemov, G. N., Sharakhov, I. V., and Stegniy, V. N. (2017) Tissue-specific features of the X chromosome and nucleolus spatial dynamics in a malaria mosquito, Anopheles atroparvus, PLoS One, 12, e0171290.CrossRefPubMedGoogle Scholar
  66. 66.
    Stegnii, V. N. (1979) Reorganization of the structure of interphase nuclei during the onto-and phylogeny of malaria mosquitoes, Dokl. Akad. Nauk. SSSR, 249, 1231–1234.PubMedGoogle Scholar
  67. 67.
    Stegnii, V. N., and Sharakhova, M. V. (1991) Systemic reorganization of the architechtonics of polytene chromosomes in onto-and phylogenesis of malaria mosquitoes. Structural features regional of chromosomal adhesion to the nuclear membrane, Genetika, 27, 828–835.PubMedGoogle Scholar
  68. 68.
    Ollion, J., Cochennec, J., Loll, F., Escude, C., and Boudier, T. (2013) TANGO: a generic tool for high-throughput 3D image analysis for studying nuclear organization, Bioinformatics, 29, 1840–1841.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Stegnii, V. N. (1987) Systemic reorganization of the archi-tectonics of polytene chromosomes in the onto-and phylogenesis of malarial mosquitoes. II. Species specificity in the pattern of chromosome relations with the nuclear envelope of nutrient ovarian cells, Genetika, 23, 1194–1199.PubMedGoogle Scholar
  70. 70.
    Pombi, M., Caputo, B., Simard, F., Di Deco, M. A., Coluzzi, M., della Torre, A., Costantini, C., Besansky, N. J., and Petrarca, V. (2008) Chromosomal plasticity and evolutionary potential in the malaria vector Anopheles gambiae sensu stricto: insights from three decades of rare paracentric inversions, BMC Evol. Biol., 8, 309.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Pevzner, P., and Tesler, G. (2003) Human and mouse genomic sequences reveal extensive breakpoint reuse in mammalian evolution, Proc. Natl. Acad. Sci. USA, 100, 7672–7677.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Alekseyev, M. A. (2008) Multi-break rearrangements and breakpoint re-uses: from circular to linear genomes, J. Comput. Biol., 15, 1117–1131.CrossRefPubMedGoogle Scholar
  73. 73.
    Gandhi, M., Evdokimova, V., and Nikiforov, Y. E. (2010) Mechanisms of chromosomal rearrangements in solid tumors: the model of papillary thyroid carcinoma, Mol. Cell Endocrinol., 321, 36–43.CrossRefPubMedGoogle Scholar
  74. 74.
    Marshall, W. F. (2002) Order and disorder in the nucleus, Curr. Biol., 12, R185–192.CrossRefPubMedGoogle Scholar
  75. 75.
    Folle, G. A. (2008) Nuclear architecture, chromosome domains and genetic damage, Mutat. Res., 658, 172–183.PubMedGoogle Scholar
  76. 76.
    Fudenberg, G., Getz, G., Meyerson, M., and Mirny, L. A. (2011) High order chromatin architecture shapes the landscape of chromosomal alterations in cancer, Nat. Biotechnol., 29, 1109–1113.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Gandhi, M., Medvedovic, M., Stringer, J. R., and Nikiforov, Y. E. (2006) Interphase chromosome folding determines spatial proximity of genes participating in carcinogenic RET/PTC rearrangements, Oncogene, 25, 2360–2366.CrossRefPubMedGoogle Scholar
  78. 78.
    Duan, Z., Andronescu, M., Schutz, K., McIlwain, S., Kim, Y. J., Lee, C., Shendure, J., Fields, S., Blau, C. A., and Noble, W. S. (2010) A three-dimensional model of the yeast genome, Nature, 465, 363–367.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Khrameeva, E. E., Fudenberg, G., Gelfand, M. S., and Mirny, L. A. (2016) History of chromosome rearrangements reflects the spatial organization of yeast chromosomes, J. Bioinform. Comput. Biol., 14, 1641002.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Cheutin, T., Bantignies, F., Leblanc, B., and Cavalli, G. (2010) Chromatin folding: from linear chromosomes to the 4D nucleus, Cold Spring Harb. Symp. Quant. Biol., 75, 461–473.CrossRefPubMedGoogle Scholar
  81. 81.
    Peric-Hupkes, D., and van Steensel, B. (2010) Role of the nuclear lamina in genome organization and gene expression, Cold Spring Harb. Symp. Quant. Biol., 75, 517–524.CrossRefPubMedGoogle Scholar
  82. 82.
    Nagano, T., Lubling, Y., Stevens, T. J., Schoenfelder, S., Yaffe, E., Dean, W., Laue, E. D., Tanay, A., and Fraser, P. (2013) Single-cell Hi-C reveals cell-to-cell variability in chromosome structure, Nature, 502, 59–64.CrossRefPubMedGoogle Scholar
  83. 83.
    Mirny, L. A. (2011) The fractal globule as a model of chromatin architecture in the cell, Chromosome Res., 19, 37–51.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Zhang, B., and Wolynes, P. G. (2015) Topology, structures, and energy landscapes of human chromosomes, Proc. Natl. Acad. Sci. USA, 112, 6062–6067.CrossRefPubMedGoogle Scholar
  85. 85.
    Li, Q. J., Tjong, H., Li, X., Gong, K., Zhou, X. J., Chiolo, I., and Alber, F. (2017) The three-dimensional genome organization of Drosophila melanogaster through data integration, Genome Biol., 18, 145.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Cook, P. R., and Marenduzzo, D. (2009) Entropic organization of interphase chromosomes, J. Cell Biol., 186, 825–834.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Mirny, L. (2011) The fractal globule as a model of chromatin architecture in the cell, Chromosome Res., 19, 37–51.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Wong, H., Marie-Nelly, H., Herbert, S., Carrivain, P., Blanc, H., Koszul, R., Fabre, E., and Zimmer, C. (2012) A predictive computational model of the dynamic 3D interphase yeast nucleus, Curr. Biol., 22, 1881–1890.CrossRefPubMedGoogle Scholar
  89. 89.
    Wong, H., Arbona, J. M., and Zimmer, C. (2013) How to build a yeast nucleus, Nucleus, 4, 361–366CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Rowley, M. J., and Corces, V. G. (2016) The three-dimensional genome: principles and roles of long-distance interactions, Curr. Opin. Cell Biol., 40, 8–14.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Kinney, N., Sharakhov, I. V., and Onufriev, A. V. (2014) Investigation of the chromosome regions with significant affinity for the nuclear envelope in fruit fly–a model-based approach, PLoS One, 9, e91943.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • I. V. Sharakhov
    • 1
    • 2
  • S. M. Bondarenko
    • 2
  • G. N. Artemov
    • 2
  • A. V. Onufriev
    • 3
    • 4
  1. 1.Virginia Polytechnic Institute and State University, Fralin Life Science InstituteDepartment of EntomologyBlacksburgUSA
  2. 2.Tomsk State University, Laboratory of EcologyGenetics and Environmental ProtectionTomskRussia
  3. 3.Virginia Polytechnic Institute and State UniversityDepartment of PhysicsBlacksburgUSA
  4. 4.Virginia Polytechnic Institute and State UniversityDepartment of Computer ScienceBlacksburgUSA

Personalised recommendations