Skip to main content

Advertisement

Log in

Methods of genome engineering: a new era of molecular biology

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Genome sequencing now progressing much faster than our understanding of the majority of gene functions. Studies of physiological functions of various genes would not be possible without the ability to manipulate the genome. Methods of genome engineering can now be used to inactivate a gene to study consequences, introduce heterologous genes into the genome for scientific and biotechnology applications, create genes coding for fusion proteins to study gene expression, protein localization, and molecular interactions, and to develop animal models of human diseases to find appropriate treatment. Finally, genome engineering might present the possibility to cure hereditary diseases. In this review, we discuss and compare the most important methods for gene inactivation and editing, as well as methods for incorporation of heterologous genes into the genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CRISPR:

clustered regularly interspaced short palindromic repeat

crRNA:

CRISPR RNA

HDR:

homology directed repair

IR:

inverted repeats

NHEJ:

nonhomologous end joining

PAM:

protospacer adjacent motif

RVD:

repeat variable diresidue

TALE:

transcription activator-like effector

TALEN:

TALE-nuclease

tracrRNA:

trans-activating CRISPR RNA

ZF:

zinc-finger (protein)

ZFN:

zinc-finger nuclease

References

  1. Hinnen, A., Hicks, J. B., and Fink, G. R. (1978) Transformation of yeast, Proc. Natl. Acad. Sci. USA, 75, 1929–1933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Szostak, J. W., Orr-Weaver, T. L., Rothstein, R. J., and Stahl, F. W. (1983) The double-strand-break repair model for recombination, Cell, 33, 25–35.

    Article  CAS  PubMed  Google Scholar 

  3. Thomas, K. R., Folger, K. R., and Capecchi, M. R. (1986) High frequency targeting of genes to specific sites in the mammalian genome, Cell, 44, 419–428.

    Article  CAS  PubMed  Google Scholar 

  4. Akagi, K., Sandig, V., Vooijs, M., Van der Valk, M., Giovannini, M., Strauss, M., and Berns, A. (1997) Cremediated somatic site-specific recombination in mice, Nucleic Acids Res., 25, 1766–1773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Epinat, J. C., Arnould, S., Chames, P., Rochaix, P., Desfontaines, D., Puzin, C., Patin, A., Zanghellini, A., Paques, F., and Lacroix, E. (2003) A novel engineered meganuclease induces homologous recombination in yeast and mammalian cells, Nucleic Acids Res., 31, 2952–2962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ivics, Z., Hackett, P. B., Plasterk, R. H., and Izsvak, Z. (1997) Molecular reconstruction of Sleeping Beauty, a Tc1like transposon from fish, and its transposition in human cells, Cell, 91, 501–510.

    Article  CAS  PubMed  Google Scholar 

  7. Kawakami, K., Shima, A., and Kawakami, N. (2000) Identification of a functional transposase of the Tol2 element, an Ac-like element from the Japanese medaka fish, and its transposition in the zebrafish germ lineage, Proc. Natl. Acad. Sci. USA, 97, 11403–11408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lois, C., Hong, E. J., Pease, S., Brown, E. J., and Baltimore, D. (2002) Germline transmission and tissuespecific expression of transgenes delivered by lentiviral vectors, Science, 295, 868–872.

    Article  CAS  PubMed  Google Scholar 

  9. Khan, I. F., Hirata, R. K., and Russell, D. W. (2011) AAVmediated gene targeting methods for human cells, Nat. Protoc., 6, 482–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Palmiter, R. D., and Brinster, R. L. (1986) Germ-line transformation of mice, Annu. Rev. Genet., 20, 465–499.

    Article  CAS  PubMed  Google Scholar 

  11. Soriano, P., Cone, R. D., Mulligan, R. C., and Jaenisch, R. (1986) Tissue-specific and ectopic expression of genes introduced into transgenic mice by retroviruses, Science, 234, 1409–1413.

    Article  CAS  PubMed  Google Scholar 

  12. Brown, G. A., and Corbin, T. J. (2002) Methods in Molecular Biology (Clarke, A. R., ed.) Humana Press Inc, Totowa, New Jersey, pp. 39–70.

    Google Scholar 

  13. Aiuti, A., and Roncarolo, M. G. (2009) Ten years of gene therapy for primary immune deficiencies, Hematol. Am. Soc. Hematol. Educ. Program, 682-689.

  14. Baum, C., Von Kalle, C., Staal, F. J., Li, Z., Fehse, B., Schmidt, M., Weerkamp, F., Karlsson, S., Wagemaker, G., and Williams, D. A. (2004) Chance or necessity? Insertional mutagenesis in gene therapy and its consequences, Mol. Ther., 9, 5–13.

    Article  CAS  PubMed  Google Scholar 

  15. Raper, S. E., Chirmule, N., Lee, F. S., Wivel, N. A., Bagg, A., Gao, G. P., Wilson, J. M., and Batshaw, M. L. (2003) Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer, Mol. Genet. Metab., 80, 148–158.

    Article  CAS  PubMed  Google Scholar 

  16. Mingozzi, F., and High, K. A. (2011) Immune responses to AAV in clinical trials, Curr. Gene Ther., 11, 321–330.

    Article  CAS  PubMed  Google Scholar 

  17. Koga, A., Suzuki, M., Inagaki, H., Bessho, Y., and Hori, H. (1996) Transposable element in fish, Nature, 383, 30.

    Article  CAS  PubMed  Google Scholar 

  18. Miskey, C., Izsvak, Z., Plasterk, R. H., and Ivics, Z. (2003) The Frog Prince: a reconstructed transposon from Rana pipiens with high transpositional activity in vertebrate cells, Nucleic Acids Res., 31, 6873–6881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fraser, M. J., Brusca, J. S., Smith, G. E., and Summers, M. D. (1985) Transposon-mediated mutagenesis of a baculovirus, Virology, 145, 356–361.

    Article  CAS  PubMed  Google Scholar 

  20. Izsvak, Z., Ivics, Z., and Plasterk, R. H. (2000) Sleeping Beauty, a wide host-range transposon vector for genetic transformation in vertebrates, J. Mol. Biol., 302, 93–102.

    Article  CAS  PubMed  Google Scholar 

  21. Luo, G., Ivics, Z., Izsvak, Z., and Bradley, A. (1998) Chromosomal transposition of a Tc1/mariner-like element in mouse embryonic stem cells, Proc. Natl. Acad. Sci. USA, 95, 10769–10773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Orban, T. I., Apati, A., Nemeth, A., Varga, N., Krizsik, V., Schamberger, A., Szebenyi, K., Erdei, Z., Varady, G., Karaszi, E., Homolya, L., Nemet, K., Gocza, E., Miskey, C., Mates, L., Ivics, Z., Izsvak, Z., and Sarkadi, B. (2009) Applying a “double-feature” promoter to identify cardiomyocytes differentiated from human embryonic stem cells following transposon-based gene delivery, Stem Cells, 27, 1077–1087.

    Article  CAS  PubMed  Google Scholar 

  23. Hacein-Bey-Abina, S., Von Kalle, C., Schmidt, M., Le Deist, F., Wulffraat, N., McIntyre, E., Radford, I., Villeval, J. L., Fraser, C. C., Cavazzana-Calvo, M., and Fischer, A. (2003) A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency, N. Engl. J. Med., 348, 255–256.

    Article  PubMed  Google Scholar 

  24. Rothstein, R. J. (1983) One-step gene disruption in yeast, Methods Enzymol., 101, 202–211.

    Article  CAS  PubMed  Google Scholar 

  25. Scherer, S., and Davis, R. W. (1979) Replacement of chromosome segments with altered DNA sequences constructed in vitro, Proc. Natl. Acad. Sci. USA, 76, 4951–4955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Capecchi, M. R. (2005) Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century, Nat. Rev. Genet., 6, 507–512.

    Article  CAS  PubMed  Google Scholar 

  27. Capecchi, M. R. (1989) Altering the genome by homologous recombination, Science, 244, 1288–1292.

    Article  CAS  PubMed  Google Scholar 

  28. Mansour, S. L., Thomas, K. R., and Capecchi, M. R. (1988) Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes, Nature, 336, 348–352.

    Article  CAS  PubMed  Google Scholar 

  29. Vasquez, K. M., Marburger, K., Intody, Z., and Wilson, J. H. (2001) Manipulating the mammalian genome by homologous recombination, Proc. Natl. Acad. Sci. USA, 98, 8403–8410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Latt, S. A. (1981) Sister chromatid exchange formation, Annu. Rev. Genet., 15, 11–55.

    Article  CAS  PubMed  Google Scholar 

  31. Youds, J. L., and Boulton, S. J. (2011) The choice in meiosis–defining the factors that influence crossover or noncrossover formation, J. Cell Sci., 124, 501–513.

    Article  CAS  PubMed  Google Scholar 

  32. Haber, J. E. (2012) Mating-type genes and MAT switching in Saccharomyces cerevisiae, Genetics, 191, 33–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rouet, P., Smih, F., and Jasin, M. (1994) Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells, Proc. Natl. Acad. Sci. USA, 91, 6064–6068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Smih, F., Rouet, P., Romanienko, P. J., and Jasin, M. (1995) Double-strand breaks at the target locus stimulate gene targeting in embryonic stem cells, Nucleic Acids Res., 23, 5012–5019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sarbajna, S., and West, S. C. (2014) Holliday junction processing enzymes as guardians of genome stability, Trends Biochem. Sci., 39, 409–419.

    Article  CAS  PubMed  Google Scholar 

  36. Rouet, P., Smih, F., and Jasin, M. (1994) Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease, Mol. Cell. Biol., 14, 8096–8106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bibikova, M., Golic, M., Golic, K. G., and Carroll, D. (2002) Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases, Genetics, 161, 1169–1175.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Lieber, M. R. (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway, Annu. Rev. Biochem., 79, 181–211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Puchta, H. (2005) The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution, J. Exp. Bot., 56, 1–14.

    Article  CAS  PubMed  Google Scholar 

  40. McVey, M., and Lee, S. E. (2008) MMEJ repair of doublestrand breaks (director’s cut): deleted sequences and alternative endings, Trends Genet., 24, 529–538.

    Article  CAS  PubMed  Google Scholar 

  41. Chin, J. Y., and Glazer, P. M. (2009) Repair of DNA lesions associated with triplex-forming oligonucleotides, Mol. Carcinog., 48, 389–399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Doss, R. M., Marques, M. A., Foister, S., Chenoweth, D. M., and Dervan, P. B. (2006) Programmable oligomers for minor groove DNA recognition, J. Am. Chem. Soc., 128, 9074–9079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kim, K. H., Nielsen, P. E., and Glazer, P. M. (2006) Sitespecific gene modification by PNAs conjugated to psoralen, Biochemistry, 45, 314–323.

    Article  CAS  PubMed  Google Scholar 

  44. Carroll, D. (2011) Genome engineering with zinc-finger nucleases, Genetics, 188, 773–782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chandrasegaran, S., and Carroll, D. (2015) Origins of programmable nucleases for genome engineering, J. Mol. Biol., 428, 963–989.

    Article  PubMed  CAS  Google Scholar 

  46. Doudna, J. A., and Charpentier, E. (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9, Science, 346, 1258096.

  47. Li, L., Wu, L. P., and Chandrasegaran, S. (1992) Functional domains in Fok I restriction endonuclease, Proc. Natl. Acad. Sci. USA, 89, 4275–4279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kim, Y. G., and Chandrasegaran, S. (1994) Chimeric restriction endonuclease, Proc. Natl. Acad. Sci. USA, 91, 883–887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pavletich, N. P., and Pabo, C. O. (1991) Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 Å, Science, 252, 809–817.

    Article  CAS  PubMed  Google Scholar 

  50. Kim, H. J., Lee, H. J., Kim, H., Cho, S. W., and Kim, J. S. (2009) Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly, Genome Res., 19, 1279–1288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Desjarlais, J. R., and Berg, J. M. (1992) Toward rules relating zinc finger protein sequences and DNA binding site preferences, Proc. Natl. Acad. Sci. USA, 89, 7345–7349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Desjarlais, J. R., and Berg, J. M. (1993) Use of a zinc-finger consensus sequence framework and specificity rules to design specific DNA binding proteins, Proc. Natl. Acad. Sci. USA, 90, 2256–2260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Segal, D. J., Dreier, B., Beerli, R. R., and Barbas, C. F., 3rd. (1999) Toward controlling gene expression at will: selection and design of zinc finger domains recognizing each of the 5'-GNN-3' DNA target sequences, Proc. Natl. Acad. Sci. USA, 96, 2758–2763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dreier, B., Beerli, R. R., Segal, D. J., Flippin, J. D., and Barbas, C. F., 3rd. (2001) Development of zinc finger domains for recognition of the 5'-ANN-3' family of DNA sequences and their use in the construction of artificial transcription factors, J. Biol. Chem., 276, 29466–29478.

    Article  CAS  PubMed  Google Scholar 

  55. Dreier, B., Fuller, R. P., Segal, D. J., Lund, C. V., Blancafort, P., Huber, A., Koksch, B., and Barbas, C. F., 3rd. (2005) Development of zinc finger domains for recognition of the 5'-CNN-3' family DNA sequences and their use in the construction of artificial transcription factors, J. Biol. Chem., 280, 35588–35597.

    Article  CAS  PubMed  Google Scholar 

  56. Carroll, D. (2014) Genome engineering with targetable nucleases, Annu. Rev. Biochem., 83, 409–439.

    Article  CAS  PubMed  Google Scholar 

  57. Bitinaite, J., Wah, D. A., Aggarwal, A. K., and Schildkraut, I. (1998) FokI dimerization is required for DNA cleavage, Proc. Natl. Acad. Sci. USA, 95, 10570–10575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Smith, J., Bibikova, M., Whitby, F. G., Reddy, A. R., Chandrasegaran, S., and Carroll, D. (2000) Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains, Nucleic Acids Res., 28, 3361–3369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bibikova, M., Carroll, D., Segal, D. J., Trautman, J. K., Smith, J., Kim, Y. G., and Chandrasegaran, S. (2001) Stimulation of homologous recombination through targeted cleavage by chimeric nucleases, Mol. Cell. Biol., 21, 289–297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Shimizu, Y., Bhakta, M. S., and Segal, D. J. (2009) Restricted spacer tolerance of a zinc finger nuclease with a six amino acid linker, Bioorg. Med. Chem. Lett., 19, 3970–3972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kim, Y. G., Cha, J., and Chandrasegaran, S. (1996) Hybrid restriction enzymes: zinc finger fusions to FokI cleavage domain, Proc. Natl. Acad. Sci. USA, 93, 1156–1160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ramirez, C. L., Foley, J. E., Wright, D. A., Muller-Lerch, F., Rahman, S. H., Cornu, T. I., Winfrey, R. J., Sander, J. D., Fu, F., Townsend, J. A., Cathomen, T., Voytas, D. F., and Joung, J. K. (2008) Unexpected failure rates for modular assembly of engineered zinc fingers, Nat. Methods, 5, 374–375.

    Article  CAS  PubMed  Google Scholar 

  63. Kim, J. S., Lee, H. J., and Carroll, D. (2010) Genome editing with modularly assembled zinc-finger nucleases, Nat. Methods, 7, 91; author reply 91-92.

    Article  CAS  PubMed  Google Scholar 

  64. Carroll, D., Morton, J. J., Beumer, K. J., and Segal, D. J. (2006) Design, construction and in vitro testing of zinc finger nucleases, Nat. Protoc., 1, 1329–1341.

    Article  CAS  PubMed  Google Scholar 

  65. Gonzalez, B., Schwimmer, L. J., Fuller, R. P., Ye, Y., Asawapornmongkol, L., and Barbas, C. F. (2010) Modular system for the construction of zinc-finger libraries and proteins, Nat. Protoc., 5, 791–810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Shimizu, Y., Sollu, C., Meckler, J. F., Adriaenssens, A., Zykovich, A., Cathomen, T., and Segal, D. J. (2011) Adding fingers to an engineered zinc finger nuclease can reduce activity, Biochemistry, 50, 5033–5041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Moore, M., Klug, A., and Choo, Y. (2001) Improved DNA binding specificity from polyzinc finger peptides by using strings of two-finger units, Proc. Natl. Acad. Sci. USA, 98, 1437–1441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gupta, A., Christensen, R. G., Rayla, A. L., Lakshmanan, A., Stormo, G. D., and Wolfe, S. A. (2012) An optimized two-finger archive for ZFN-mediated gene targeting, Nat. Methods, 9, 588–590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sander, J. D., Dahlborg, E. J., Goodwin, M. J., Cade, L., Zhang, F., Cifuentes, D., Curtin, S. J., Blackburn, J. S., Thibodeau-Beganny, S., Qi, Y., Pierick, C. J., Hoffman, E., Maeder, M. L., Khayter, C., Reyon, D., Dobbs, D., Langenau, D. M., Stupar, R. M., Giraldez, A. J., Voytas, D. F., Peterson, R. T., Yeh, J. R., and Joung, J. K. (2011) Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA), Nat. Methods, 8, 67–69.

    Article  CAS  PubMed  Google Scholar 

  70. Miller, J. C., Tan, S., Qiao, G., Barlow, K. A., Wang, J., Xia, D. F., Meng, X., Paschon, D. E., Leung, E., Hinkley, S. J., Dulay, G. P., Hua, K. L., Ankoudinova, I., Cost, G. J., Urnov, F. D., Zhang, H. S., Holmes, M. C., Zhang, L., Gregory, P. D., and Rebar, E. J. (2011) A TALE nuclease architecture for efficient genome editing, Nat. Biotechnol., 29, 143–148.

    Article  CAS  PubMed  Google Scholar 

  71. Boch, J., Scholze, H., Schornack, S., Landgraf, A., Hahn, S., Kay, S., Lahaye, T., Nickstadt, A., and Bonas, U. (2009) Breaking the code of DNA binding specificity of TAL-type III effectors, Science, 326, 1509–1512.

    Article  CAS  PubMed  Google Scholar 

  72. Moscou, M. J., and Bogdanove, A. J. (2009) A simple cipher governs DNA recognition by TAL effectors, Science, 326, 1501.

    Article  CAS  PubMed  Google Scholar 

  73. Morbitzer, R., Romer, P., Boch, J., and Lahaye, T. (2010) Regulation of selected genome loci using de novo-engineered transcription activator-like effector (TALE)-type transcription factors, Proc. Natl. Acad. Sci. USA, 107, 21617–21622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ramalingam, S., Annaluru, N., Kandavelou, K., and Chandrasegaran, S. (2014) TALEN-mediated generation and genetic correction of disease-specific human induced pluripotent stem cells, Curr. Gene Ther., 14, 461–472.

    Article  CAS  PubMed  Google Scholar 

  75. Ramalingam, S., London, V., Kandavelou, K., Cebotaru, L., Guggino, W., Civin, C., and Chandrasegaran, S. (2013) Generation and genetic engineering of human induced pluripotent stem cells using designed zinc finger nucleases, Stem Cells Dev., 22, 595–610.

    Article  CAS  PubMed  Google Scholar 

  76. Kim, H., and Kim, J. S. (2014) A guide to genome engineering with programmable nucleases, Nat. Rev. Genet., 15, 321–334.

    Article  CAS  PubMed  Google Scholar 

  77. Xu, P., Tong, Y., Liu, X. Z., Wang, T. T., Cheng, L., Wang, B. Y., Lv, X., Huang, Y., and Liu, D. P. (2015) Both TALENs and CRISPR/Cas9 directly target the HBB IVS2-654 (C > T) mutation in beta-thalassemia-derived iPSCs, Sci. Rep., 5, 12065.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Guilinger, J. P., Thompson, D. B., and Liu, D. R. (2014) Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification, Nat. Biotechnol., 32, 577–582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Holkers, M., Maggio, I., Liu, J., Janssen, J. M., Miselli, F., Mussolino, C., Recchia, A., Cathomen, T., and Goncalves, M. A. (2013) Differential integrity of TALE nuclease genes following adenoviral and lentiviral vector gene transfer into human cells, Nucleic Acids Res., 41, e63.

    Article  CAS  PubMed  Google Scholar 

  80. Briggs, A. W., Rios, X., Chari, R., Yang, L., Zhang, F., Mali, P., and Church, G. M. (2012) Iterative capped assembly: rapid and scalable synthesis of repeat-module DNA such as TAL effectors from individual monomers, Nucleic Acids Res., 40, e117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Cermak, T., Doyle, E. L., Christian, M., Wang, L., Zhang, Y., Schmidt, C., Baller, J. A., Somia, N. V., Bogdanove, A. J., and Voytas, D. F. (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting, Nucleic Acids Res., 39, e82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Reyon, D., Tsai, S. Q., Khayter, C., Foden, J. A., Sander, J. D., and Joung, J. K. (2012) FLASH assembly of TALENs for high-throughput genome editing, Nat. Biotechnol., 30, 460–465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Schmid-Burgk, J. L., Schmidt, T., Kaiser, V., Honing, K., and Hornung, V. (2013) A ligation-independent cloning technique for high-throughput assembly of transcription activator-like effector genes, Nat. Biotechnol., 31, 76–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mussolino, C., Morbitzer, R., Lutge, F., Dannemann, N., Lahaye, T., and Cathomen, T. (2011) A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity, Nucleic Acids Res., 39, 9283–9293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kim, Y., Kweon, J., Kim, A., Chon, J. K., Yoo, J. Y., Kim, H. J., Kim, S., Lee, C., Jeong, E., Chung, E., Kim, D., Lee, M. S., Go, E. M., Song, H. J., Kim, H., Cho, N., Bang, D., Kim, S., and Kim, J. S. (2013) A library of TAL effector nucleases spanning the human genome, Nat. Biotechnol., 31, 251–258.

    Article  CAS  PubMed  Google Scholar 

  86. Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D. A., and Horvath, P. (2007) CRISPR provides acquired resistance against viruses in prokaryotes, Science, 315, 1709–1712.

    Article  CAS  PubMed  Google Scholar 

  87. Makarova, K. S., Grishin, N. V., Shabalina, S. A., Wolf, Y. I., and Koonin, E. V. (2006) A putative RNA-interferencebased immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action, Biol. Direct, 1, 7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Deltcheva, E., Chylinski, K., Sharma, C. M., Gonzales, K., Chao, Y., Pirzada, Z. A., Eckert, M. R., Vogel, J., and Charpentier, E. (2011) CRISPR RNA maturation by transencoded small RNA and host factor RNase III, Nature, 471, 602–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., and Charpentier, E. (2012) A programmable dualRNA-guided DNA endonuclease in adaptive bacterial immunity, Science, 337, 816–821.

    Article  CAS  PubMed  Google Scholar 

  90. Hsu, P. D., Scott, D. A., Weinstein, J. A., Ran, F. A., Konermann, S., Agarwala, V., Li, Y., Fine, E. J., Wu, X., Shalem, O., Cradick, T. J., Marraffini, L. A., Bao, G., and Zhang, F. (2013) DNA targeting specificity of RNA-guided Cas9 nucleases, Nat. Biotechnol., 31, 827–832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Jiang, W., Bikard, D., Cox, D., Zhang, F., and Marraffini, L. A. (2013) RNA-guided editing of bacterial genomes using CRISPR-Cas systems, Nat. Biotechnol., 31, 233–239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Mali, P., Aach, J., Stranges, P. B., Esvelt, K. M., Moosburner, M., Kosuri, S., Yang, L., and Church, G. M. (2013) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering, Nat. Biotechnol., 31, 833–838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Mojica, F. J., Diez-Villasenor, C., Garcia-Martinez, J., and Almendros, C. (2009) Short motif sequences determine the targets of the prokaryotic CRISPR defense system, Microbiology, 155, 733–740.

    Article  CAS  PubMed  Google Scholar 

  94. Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang, W., Marraffini, L. A., and Zhang, F. (2013) Multiplex genome engineering using CRISPR/Cas systems, Science, 339, 819–823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Fonfara, I., Le Rhun, A., Chylinski, K., Makarova, K. S., Lecrivain, A. L., Bzdrenga, J., Koonin, E. V., and Charpentier, E. (2014) Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems, Nucleic Acids Res., 42, 2577–2590.

    Article  CAS  PubMed  Google Scholar 

  96. Hou, Z., Zhang, Y., Propson, N. E., Howden, S. E., Chu, L. F., Sontheimer, E. J., and Thomson, J. A. (2013) Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis, Proc. Natl. Acad. Sci. USA, 110, 15644–15649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Shan, Q., Wang, Y., Li, J., Zhang, Y., Chen, K., Liang, Z., Zhang, K., Liu, J., Xi, J. J., Qiu, J. L., and Gao, C. (2013) Targeted genome modification of crop plants using a CRISPR-Cas system, Nat. Biotechnol., 31, 686–688.

    Article  CAS  PubMed  Google Scholar 

  98. Ding, Q., Regan, S. N., Xia, Y., Oostrom, L. A., Cowan, C. A., and Musunuru, K. (2013) Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs, Cell Stem Cell, 12, 393–394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Findlay, G. M., Boyle, E. A., Hause, R. J., Klein, J. C., and Shendure, J. (2014) Saturation editing of genomic regions by multiplex homology-directed repair, Nature, 513, 120–123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gilbert, L. A., Horlbeck, M. A., Adamson, B., Villalta, J. E., Chen, Y., Whitehead, E. H., Guimaraes, C., Panning, B., Ploegh, H. L., Bassik, M. C., Qi, L. S., Kampmann, M., and Weissman, J. S. (2014) Genome-scale CRISPRmediated control of gene repression and activation, Cell, 159, 647–661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Shalem, O., Sanjana, N. E., Hartenian, E., Shi, X., Scott, D. A., Mikkelsen, T. S., Heckl, D., Ebert, B. L., Root, D. E., Doench, J. G., and Zhang, F. (2014) Genome-scale CRISPR-Cas9 knockout screening in human cells, Science, 343, 84–87.

    Article  CAS  PubMed  Google Scholar 

  102. Niu, Y., Shen, B., Cui, Y., Chen, Y., Wang, J., Wang, L., Kang, Y., Zhao, X., Si, W., Li, W., Xiang, A. P., Zhou, J., Guo, X., Bi, Y., Si, C., Hu, B., Dong, G., Wang, H., Zhou, Z., Li, T., Tan, T., Pu, X., Wang, F., Ji, S., Zhou, Q., Huang, X., Ji, W., and Sha, J. (2014) Generation of genemodified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos, Cell, 156, 836–843.

    Article  CAS  PubMed  Google Scholar 

  103. Wang, H., Yang, H., Shivalila, C. S., Dawlaty, M. M., Cheng, A. W., Zhang, F., and Jaenisch, R. (2013) Onestep generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering, Cell, 153, 910–918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Xie, K., Minkenberg, B., and Yang, Y. (2015) Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system, Proc. Natl. Acad. Sci. USA, 112, 3570–3575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sollu, C., Pars, K., Cornu, T. I., Thibodeau-Beganny, S., Maeder, M. L., Joung, J. K., Heilbronn, R., and Cathomen, T. (2010) Autonomous zinc-finger nuclease pairs for targeted chromosomal deletion, Nucleic Acids Res., 38, 8269–8276.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Ramakrishna, S., Kwaku Dad, A. B., Beloor, J., Gopalappa, R., Lee, S. K., and Kim, H. (2014) Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA, Genome Res., 24, 1020–1027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zuris, J. A., Thompson, D. B., Shu, Y., Guilinger, J. P., Bessen, J. L., Hu, J. H., Maeder, M. L., Joung, J. K., Chen, Z. Y., and Liu, D. R. (2015) Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo, Nat. Biotechnol., 33, 73–80.

    Article  CAS  PubMed  Google Scholar 

  108. Zetsche, B., Volz, S. E., and Zhang, F. (2015) A split-Cas9 architecture for inducible genome editing and transcription modulation, Nat. Biotechnol., 33, 139–142.

    Article  CAS  PubMed  Google Scholar 

  109. Davis, K. M., Pattanayak, V., Thompson, D. B., Zuris, J. A., and Liu, D. R. (2015) Small molecule-triggered Cas9 protein with improved genome-editing specificity, Nat. Chem. Biol., 11, 316–318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ran, F. A., Hsu, P. D., Lin, C. Y., Gootenberg, J. S., Konermann, S., Trevino, A. E., Scott, D. A., Inoue, A., Matoba, S., Zhang, Y., and Zhang, F. (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity, Cell, 154, 1380–1389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Tsai, S. Q., Wyvekens, N., Khayter, C., Foden, J. A., Thapar, V., Reyon, D., Goodwin, M. J., Aryee, M. J., and Joung, J. K. (2014) Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing, Nat. Biotechnol., 32, 569–576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Slaymaker, I. M., Gao, L., Zetsche, B., Scott, D. A., Yan, W. X., and Zhang, F. (2016) Rationally engineered Cas9 nucleases with improved specificity, Science, 351, 84–88.

    Article  CAS  PubMed  Google Scholar 

  113. Jinek, M., East, A., Cheng, A., Lin, S., Ma, E., and Doudna, J. (2013) RNA-programmed genome editing in human cells, Elife, 2, e00471.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Cho, S. W., Kim, S., Kim, J. M., and Kim, J. S. (2013) Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease, Nat. Biotechnol., 31, 230–232.

    Article  CAS  PubMed  Google Scholar 

  115. Pattanayak, V., Ramirez, C. L., Joung, J. K., and Liu, D. R. (2011) Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection, Nat. Methods, 8, 765–770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Fu, Y., Foden, J. A., Khayter, C., Maeder, M. L., Reyon, D., Joung, J. K., and Sander, J. D. (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells, Nat. Biotechnol., 31, 822–826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Cornu, T. I., Thibodeau-Beganny, S., Guhl, E., Alwin, S., Eichtinger, M., Joung, J. K., and Cathomen, T. (2008) DNA-binding specificity is a major determinant of the activity and toxicity of zinc-finger nucleases, Mol. Ther., 16, 352–358.

    Article  CAS  PubMed  Google Scholar 

  118. Cradick, T. J., Fine, E. J., Antico, C. J., and Bao, G. (2013) CRISPR/Cas9 systems targeting β-globin and CCR5 genes have substantial off-target activity, Nucleic Acids Res., 41, 9584–9592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Cho, S. W., Kim, S., Kim, Y., Kweon, J., Kim, H. S., Bae, S., and Kim, J. S. (2014) Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases, Genome Res., 24, 132–141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kim, Y., Kweon, J., and Kim, J. S. (2013) TALENs and ZFNs are associated with different mutation signatures, Nat. Methods, 10, 185.

    Article  CAS  PubMed  Google Scholar 

  121. Bae, K. H., Kwon, Y. D., Shin, H. C., Hwang, M. S., Ryu, E. H., Park, K. S., Yang, H. Y., Lee, D. K., Lee, Y., Park, J., Kwon, H. S., Kim, H. W., Yeh, B. I., Lee, H. W., Sohn, S. H., Yoon, J., Seol, W., and Kim, J. S. (2003) Human zinc fingers as building blocks in the construction of artificial transcription factors, Nat. Biotechnol., 21, 275–280.

    Article  CAS  PubMed  Google Scholar 

  122. Mak, A. N., Bradley, P., Cernadas, R. A., Bogdanove, A. J., and Stoddard, B. L. (2012) The crystal structure of TAL effector PthXo1 bound to its DNA target, Science, 335, 716–719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Doyle, E. L., Hummel, A. W., Demorest, Z. L., Starker, C. G., Voytas, D. F., Bradley, P., and Bogdanove, A. J. (2013) TAL effector specificity for base 0 of the DNA target is altered in a complex, effectorand assay-dependent manner by substitutions for the tryptophan in cryptic repeat-1, PLoS One, 8, e82120.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Lamb, B. M., Mercer, A. C., and Barbas, C. F. (2013) Directed evolution of the TALE N-terminal domain for recognition of all 5' bases, Nucleic Acids Res., 41, 9779–9785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Bultmann, S., Morbitzer, R., Schmidt, C. S., Thanisch, K., Spada, F., Elsaesser, J., Lahaye, T., and Leonhardt, H. (2012) Targeted transcriptional activation of silent oct4 pluripotency gene by combining designer TALEs and inhibition of epigenetic modifiers, Nucleic Acids Res., 40, 5368–5377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Valton, J., Dupuy, A., Daboussi, F., Thomas, S., Marechal, A., Macmaster, R., Melliand, K., Juillerat, A., and Duchateau, P. (2012) Overcoming transcription activator-like effector (TALE) DNA binding domain sensitivity to cytosine methylation, J. Biol. Chem., 287, 38427–38432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Deng, D., Yin, P., Yan, C., Pan, X., Gong, X., Qi, S., Xie, T., Mahfouz, M., Zhu, J. K., Yan, N., and Shi, Y. (2012) Recognition of methylated DNA by TAL effectors, Cell Res., 22, 1502–1504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Koike-Yusa, H., Li, Y., Tan, E. P., Velasco-Herrera Mdel, C., and Yusa, K. (2014) Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPRguide RNA library, Nat. Biotechnol., 32, 267–273.

    Article  CAS  PubMed  Google Scholar 

  129. Nissim, L., Perli, S. D., Fridkin, A., Perez-Pinera, P., and Lu, T. K. (2014) Multiplexed and programmable regulation of gene networks with an integrated RNA and CRISPR/Cas toolkit in human cells, Mol. Cell, 54, 698–710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Porteus, M. H., and Baltimore, D. (2003) Chimeric nucleases stimulate gene targeting in human cells, Science, 300, 763.

    Article  PubMed  Google Scholar 

  131. Urnov, F. D., Miller, J. C., Lee, Y. L., Beausejour, C. M., Rock, J. M., Augustus, S., Jamieson, A. C., Porteus, M. H., Gregory, P. D., and Holmes, M. C. (2005) Highly efficient endogenous human gene correction using designed zinc-finger nucleases, Nature, 435, 646–651.

    Article  CAS  PubMed  Google Scholar 

  132. Meng, X., Noyes, M. B., Zhu, L. J., Lawson, N. D., and Wolfe, S. A. (2008) Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases, Nat. Biotechnol., 26, 695–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Hwang, W. Y., Fu, Y., Reyon, D., Maeder, M. L., Tsai, S. Q., Sander, J. D., Peterson, R. T., Yeh, J. R., and Joung, J. K. (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system, Nat. Biotechnol., 31, 227–229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Li, H., Haurigot, V., Doyon, Y., Li, T., Wong, S. Y., Bhagwat, A. S., Malani, N., Anguela, X. M., Sharma, R., Ivanciu, L., Murphy, S. L., Finn, J. D., Khazi, F. R., Zhou, S., Paschon, D. E., Rebar, E. J., Bushman, F. D., Gregory, P. D., Holmes, M. C., and High, K. A. (2011) In vivo genome editing restores haemostasis in a mouse model of haemophilia, Nature, 475, 217–221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Lombardo, A., Genovese, P., Beausejour, C. M., Colleoni, S., Lee, Y. L., Kim, K. A., Ando, D., Urnov, F. D., Galli, C., Gregory, P. D., Holmes, M. C., and Naldini, L. (2007) Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery, Nat. Biotechnol., 25, 1298–1306.

    Article  CAS  PubMed  Google Scholar 

  136. Wang, T., Wei, J. J., Sabatini, D. M., and Lander, E. S. (2014) Genetic screens in human cells using the CRISPRCas9 system, Science, 343, 80–84.

    Article  CAS  PubMed  Google Scholar 

  137. Gaj, T., Guo, J., Kato, Y., Sirk, S. J., and Barbas, C. F. (2012) Targeted gene knockout by direct delivery of zinc-finger nuclease proteins, Nat. Methods, 9, 805–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Pruett-Miller, S. M., Reading, D. W., Porter, S. N., and Porteus, M. H. (2009) Attenuation of zinc finger nuclease toxicity by small-molecule regulation of protein levels, PLoS Genet., 5, e1000376.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Bibikova, M., Beumer, K., Trautman, J. K., and Carroll, D. (2003) Enhancing gene targeting with designed zinc finger nucleases, Science, 300, 764.

    Article  CAS  PubMed  Google Scholar 

  140. Beumer, K., Bhattacharyya, G., Bibikova, M., Trautman, J. K., and Carroll, D. (2006) Efficient gene targeting in Drosophila with zinc-finger nucleases, Genetics, 172, 2391–2403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Morton, J., Davis, M. W., Jorgensen, E. M., and Carroll, D. (2006) Induction and repair of zinc-finger nucleasetargeted double-strand breaks in Caenorhabditis elegans somatic cells, Proc. Natl. Acad. Sci. USA, 103, 16370–16375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Takasu, Y., Kobayashi, I., Beumer, K., Uchino, K., Sezutsu, H., Sajwan, S., Carroll, D., Tamura, T., and Zurovec, M. (2010) Targeted mutagenesis in the silkworm Bombyx mori using zinc finger nuclease mRNA injection, Insect Biochem. Mol. Biol., 40, 759–765.

    Article  CAS  PubMed  Google Scholar 

  143. Foley, J. E., Yeh, J. R., Maeder, M. L., Reyon, D., Sander, J. D., Peterson, R. T., and Joung, J. K. (2009) Rapid mutation of endogenous zebrafish genes using zinc finger nucleases made by Oligomerized Pool ENgineering (OPEN), PLoS One, 4, e4348.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Doyon, Y., McCammon, J. M., Miller, J. C., Faraji, F., Ngo, C., Katibah, G. E., Amora, R., Hocking, T. D., Zhang, L., Rebar, E. J., Gregory, P. D., Urnov, F. D., and Amacher, S. L. (2008) Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases, Nat. Biotechnol., 26, 702–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Geurts, A. M., Cost, G. J., Freyvert, Y., Zeitler, B., Miller, J. C., Choi, V. M., Jenkins, S. S., Wood, A., Cui, X., Meng, X., Vincent, A., Lam, S., Michalkiewicz, M., Schilling, R., Foeckler, J., Kalloway, S., Weiler, H., Menoret, S., Anegon, I., Davis, G. D., Zhang, L., Rebar, E. J., Gregory, P. D., Urnov, F. D., Jacob, H. J., and Buelow, R. (2009) Knockout rats via embryo microinjection of zinc-finger nucleases, Science, 325, 433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Mashimo, T., Takizawa, A., Voigt, B., Yoshimi, K., Hiai, H., Kuramoto, T., and Serikawa, T. (2010) Generation of knockout rats with X-linked severe combined immunodeficiency (X-SCID) using zinc-finger nucleases, PLoS One, 5, e8870.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Meyer, M., De Angelis, M. H., Wurst, W., and Kuhn, R. (2010) Gene targeting by homologous recombination in mouse zygotes mediated by zinc-finger nucleases, Proc. Natl. Acad. Sci. USA, 107, 15022–15026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Carbery, I. D., Ji, D., Harrington, A., Brown, V., Weinstein, E. J., Liaw, L., and Cui, X. (2010) Targeted genome modification in mice using zinc-finger nucleases, Genetics, 186, 451–459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Zou, J., Maeder, M. L., Mali, P., Pruett-Miller, S. M., Thibodeau-Beganny, S., Chou, B. K., Chen, G., Ye, Z., Park, I. H., Daley, G. Q., Porteus, M. H., Joung, J. K., and Cheng, L. (2009) Gene targeting of a disease-related gene in human induced pluripotent stem and embryonic stem cells, Cell Stem Cell, 5, 97–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Hockemeyer, D., Soldner, F., Beard, C., Gao, Q., Mitalipova, M., DeKelver, R. C., Katibah, G. E., Amora, R., Boydston, E. A., Zeitler, B., Meng, X., Miller, J. C., Zhang, L., Rebar, E. J., Gregory, P. D., Urnov, F. D., and Jaenisch, R. (2009) Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases, Nat. Biotechnol., 27, 851–857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Perez, E. E., Wang, J., Miller, J. C., Jouvenot, Y., Kim, K. A., Liu, O., Wang, N., Lee, G., Bartsevich, V. V., Lee, Y. L., Guschin, D. Y., Rupniewski, I., Waite, A. J., Carpenito, C., Carroll, R. G., Orange, J. S., Urnov, F. D., Rebar, E. J., Ando, D., Gregory, P. D., Riley, J. L., Holmes, M. C., and June, C. H. (2008) Establishment of HIV-1 resistance in CD4+ T-cells by genome editing using zinc-finger nucleases, Nat. Biotechnol., 26, 808–816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Goldberg, A. D., Banaszynski, L. A., Noh, K. M., Lewis, P. W., Elsaesser, S. J., Stadler, S., Dewell, S., Law, M., Guo, X., Li, X., Wen, D., Chapgier, A., DeKelver, R. C., Miller, J. C., Lee, Y. L., Boydston, E. A., Holmes, M. C., Gregory, P. D., Greally, J. M., Rafii, S., Yang, C., Scambler, P. J., Garrick, D., Gibbons, R. J., Higgs, D. R., Cristea, I. M., Urnov, F. D., Zheng, D., and Allis, C. D. (2010) Distinct factors control histone variant H3.3 localization at specific genomic regions, Cell, 140, 678–691.

  153. Connelly, J. P., Barker, J. C., Pruett-Miller, S., and Porteus, M. H. (2010) Gene correction by homologous recombination with zinc finger nucleases in primary cells from a mouse model of a generic recessive genetic disease, Mol. Ther., 18, 1103–1110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Cost, G. J., Freyvert, Y., Vafiadis, A., Santiago, Y., Miller, J. C., Rebar, E., Collingwood, T. N., Snowden, A., and Gregory, P. D. (2010) BAK and BAX deletion using zincfinger nucleases yields apoptosis-resistant CHO cells, Biotechnol. Bioeng., 105, 330–340.

    Article  CAS  PubMed  Google Scholar 

  155. Liu, P. Q., Chan, E. M., Cost, G. J., Zhang, L., Wang, J., Miller, J. C., Guschin, D. Y., Reik, A., Holmes, M. C., Mott, J. E., Collingwood, T. N., and Gregory, P. D. (2010) Generation of a triple-gene knockout mammalian cell line using engineered zinc-finger nucleases, Biotechnol. Bioeng., 106, 97–105.

    CAS  PubMed  Google Scholar 

  156. Carlson, D. F., Tan, W., Lillico, S. G., Stverakova, D., Proudfoot, C., Christian, M., Voytas, D. F., Long, C. R., Whitelaw, C. B., and Fahrenkrug, S. C. (2012) Efficient TALEN-mediated gene knockout in livestock, Proc. Natl. Acad. Sci. USA, 109, 17382–17387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Gupta, A., Hall, V. L., Kok, F. O., Shin, M., McNulty, J. C., Lawson, N. D., and Wolfe, S. A. (2013) Targeted chromosomal deletions and inversions in zebrafish, Genome Res., 23, 1008–1017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Bedell, V. M., Wang, Y., Campbell, J. M., Poshusta, T. L., Starker, C. G., Krug, R. G., Tan, W., Penheiter, S. G., Ma, A. C., Leung, A. Y., Fahrenkrug, S. C., Carlson, D. F., Voytas, D. F., Clark, K. J., Essner, J. J., and Ekker, S. C. (2012) In vivo genome editing using a high-efficiency TALEN system, Nature, 491, 114–118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Huang, P., Xiao, A., Zhou, M., Zhu, Z., Lin, S., and Zhang, B. (2011) Heritable gene targeting in zebrafish using customized TALENs, Nat. Biotechnol., 29, 699–700.

    Article  PubMed  CAS  Google Scholar 

  160. Sander, J. D., Cade, L., Khayter, C., Reyon, D., Peterson, R. T., Joung, J. K., and Yeh, J. R. (2011) Targeted gene disruption in somatic zebrafish cells using engineered TALENs, Nat. Biotechnol., 29, 697–698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Cade, L., Reyon, D., Hwang, W. Y., Tsai, S. Q., Patel, S., Khayter, C., Joung, J. K., Sander, J. D., Peterson, R. T., and Yeh, J. R. (2012) Highly efficient generation of heritable zebrafish gene mutations using homoand heterodimeric TALENs, Nucleic Acids Res., 40, 8001–8010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Moore, F. E., Reyon, D., Sander, J. D., Martinez, S. A., Blackburn, J. S., Khayter, C., Ramirez, C. L., Joung, J. K., and Langenau, D. M. (2012) Improved somatic mutagenesis in zebrafish using transcription activator-like effector nucleases (TALENs), PLoS One, 7, e37877.

  163. Wood, A. J., Lo, T. W., Zeitler, B., Pickle, C. S., Ralston, E. J., Lee, A. H., Amora, R., Miller, J. C., Leung, E., Meng, X., Zhang, L., Rebar, E. J., Gregory, P. D., Urnov, F. D., and Meyer, B. J. (2011) Targeted genome editing across species using ZFNs and TALENs, Science, 333, 307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Li, T., Huang, S., Zhao, X., Wright, D. A., Carpenter, S., Spalding, M. H., Weeks, D. P., and Yang, B. (2011) Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes, Nucleic Acids Res., 39, 6315–6325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Liu, J., Li, C., Yu, Z., Huang, P., Wu, H., Wei, C., Zhu, N., Shen, Y., Chen, Y., Zhang, B., Deng, W. M., and Jiao, R. (2012) Efficient and specific modifications of the Drosophila genome by means of an easy TALEN strategy, J. Genet. Genom., 39, 209–215.

    Article  CAS  Google Scholar 

  166. Watanabe, T., Ochiai, H., Sakuma, T., Horch, H. W., Hamaguchi, N., Nakamura, T., Bando, T., Ohuchi, H., Yamamoto, T., Noji, S., and Mito, T. (2012) Non-transgenic genome modifications in a hemimetabolous insect using zincfinger and TAL effector nucleases, Nat. Commun., 3, 1017.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Tesson, L., Usal, C., Menoret, S., Leung, E., Niles, B. J., Remy, S., Santiago, Y., Vincent, A. I., Meng, X., Zhang, L., Gregory, P. D., Anegon, I., and Cost, G. J. (2011) Knockout rats generated by embryo microinjection of TALENs, Nat. Biotechnol., 29, 695–696.

    Article  CAS  PubMed  Google Scholar 

  168. Liu, H., Chen, Y., Niu, Y., Zhang, K., Kang, Y., Ge, W., Liu, X., Zhao, E., Wang, C., Lin, S., Jing, B., Si, C., Lin, Q., Chen, X., Lin, H., Pu, X., Wang, Y., Qin, B., Wang, F., Wang, H., Si, W., Zhou, J., Tan, T., Li, T., Ji, S., Xue, Z., Luo, Y., Cheng, L., Zhou, Q., Li, S., Sun, Y. E., and Ji, W. (2014) TALEN-mediated gene mutagenesis in rhesus and cynomolgus monkeys, Cell Stem Cell, 14, 323–328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Li, M., Suzuki, K., Kim, N. Y., Liu, G. H., and Izpisua Belmonte, J. C. (2014) A cut above the rest: targeted genome editing technologies in human pluripotent stem cells, J. Biol. Chem., 289, 4594–4599.

    Article  CAS  PubMed  Google Scholar 

  170. Hockemeyer, D., Wang, H., Kiani, S., Lai, C. S., Gao, Q., Cassady, J. P., Cost, G. J., Zhang, L., Santiago, Y., Miller, J. C., Zeitler, B., Cherone, J. M., Meng, X., Hinkley, S. J., Rebar, E. J., Gregory, P. D., Urnov, F. D., and Jaenisch, R. (2011) Genetic engineering of human pluripotent cells using TALE nucleases, Nat. Biotechnol., 29, 731–734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Nakayama, T., Fish, M. B., Fisher, M., Oomen-Hajagos, J., Thomsen, G. H., and Grainger, R. M. (2013) Simple and efficient CRISPR/Cas9-mediated targeted mutagenesis in Xenopus tropicalis, Genesis, 51, 835–843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Yang, D., Xu, J., Zhu, T., Fan, J., Lai, L., Zhang, J., and Chen, Y. E. (2014) Effective gene targeting in rabbits using RNA-guided Cas9 nucleases, J. Mol. Cell Biol., 6, 97–99.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Xiao, A., Wang, Z., Hu, Y., Wu, Y., Luo, Z., Yang, Z., Zu, Y., Li, W., Huang, P., Tong, X., Zhu, Z., Lin, S., and Zhang, B. (2013) Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish, Nucleic Acids Res., 41, e141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Jao, L. E., Wente, S. R., and Chen, W. (2013) Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system, Proc. Natl. Acad. Sci. USA, 110, 13904–13909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Wang, Y., Li, Z., Xu, J., Zeng, B., Ling, L., You, L., Chen, Y., Huang, Y., and Tan, A. (2013) The CRISPR/Cas system mediates efficient genome engineering in Bombyx mori, Cell Res., 23, 1414–1416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. DiCarlo, J. E., Norville, J. E., Mali, P., Rios, X., Aach, J., and Church, G. M. (2013) Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems, Nucleic Acids Res., 41, 4336–4343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Yu, Z., Ren, M., Wang, Z., Zhang, B., Rong, Y. S., Jiao, R., and Gao, G. (2013) Highly efficient genome modifications mediated by CRISPR/Cas9 in Drosophila, Genetics, 195, 289–291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Gratz, S. J., Cummings, A. M., Nguyen, J. N., Hamm, D. C., Donohue, L. K., Harrison, M. M., Wildonger, J., and O’Connor-Giles, K. M. (2013) Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease, Genetics, 194, 1029–1035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Bassett, A. R., Tibbit, C., Ponting, C. P., and Liu, J. L. (2013) Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system, Cell Rep., 4, 220–228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Jiang, W., Zhou, H., Bi, H., Fromm, M., Yang, B., and Weeks, D. P. (2013) Demonstration of CRISPR/Cas9/ sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice, Nucleic Acids Res., 41, e188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Li, W., Teng, F., Li, T., and Zhou, Q. (2013) Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems, Nat. Biotechnol., 31, 684–686.

    Article  CAS  PubMed  Google Scholar 

  182. Li, D., Qiu, Z., Shao, Y., Chen, Y., Guan, Y., Liu, M., Li, Y., Gao, N., Wang, L., Lu, X., Zhao, Y., and Liu, M. (2013) Heritable gene targeting in the mouse and rat using a CRISPR-Cas system, Nat. Biotechnol., 31, 681–683.

    Article  CAS  PubMed  Google Scholar 

  183. Li, J. F., Norville, J. E., Aach, J., McCormack, M., Zhang, D., Bush, J., Church, G. M., and Sheen, J. (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9, Nat. Biotechnol., 31, 688–691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Nekrasov, V., Staskawicz, B., Weigel, D., Jones, J. D., and Kamoun, S. (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease, Nat. Biotechnol., 31, 691–693.

    Article  CAS  PubMed  Google Scholar 

  185. Pattanayak, V., Lin, S., Guilinger, J. P., Ma, E., Doudna, J. A., and Liu, D. R. (2013) High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity, Nat. Biotechnol., 31, 839–843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., Norville, J. E., and Church, G. M. (2013) RNA-guided human genome engineering via Cas9, Science, 339, 823–826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Cheng, A. W., Wang, H., Yang, H., Shi, L., Katz, Y., Theunissen, T. W., Rangarajan, S., Shivalila, C. S., Dadon, D. B., and Jaenisch, R. (2013) Multiplexed activation of endogenous genes by CRISPR-on, an RNAguided transcriptional activator system, Cell Res., 23, 1163–1171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Sergiev.

Additional information

Original Russian Text © A. A. Chugunova, O. A. Dontsova, P. V. Sergiev, 2016, published in Biokhimiya, 2016, Vol. 81, No. 7, pp. 881-898.

To whom correspondence should be addressed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chugunova, A.A., Dontsova, O.A. & Sergiev, P.V. Methods of genome engineering: a new era of molecular biology. Biochemistry Moscow 81, 662–677 (2016). https://doi.org/10.1134/S0006297916070038

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297916070038

Keywords

Navigation