Construction of Confidence Absorbing Sets Using Statistical Methods


In this paper, the problem of constructing the confidence absorbing set is considered as follows: find the set of initial positions of a system for which at a terminal time instant a loss function will not exceed some fixed level with a given probability. The dependence of the system’s state at the terminal time instant on its initial position is assumed to be a known random function. An approach to construct outer and inner approximations of the confidence absorbing set is proposed. In the first stage, deterministic inner and outer approximations are obtained. Then, these approximations are refined for a certain finite set of initial positions of the system using sample estimates. The sample size sufficient to construct the approximations is estimated. The latter estimate is improved for the case of a star-shaped loss function. An algorithm for constructing approximations of the confidence absorbing set in the two-dimensional case is developed. The resulting approximations are used in a production planning problem.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  1. 1.

    Kibzun, A. I. & Kan, Yu. S. Zadachi stokhasticheskogo programmirovaniya s veroyatnostnymi kriteriyami (Stochastic Programming Problems with Probability Criteria). (Fizmatlit, Moscow, 2009).

    Google Scholar 

  2. 2.

    Prékopa, A. Stochastic Programming. (Kluwer, Dordrecht-Boston, 1995).

    Google Scholar 

  3. 3.

    Tamm, E. On Quasiconvexity of Probability Functions and Quantiles. Izv. Akad. Nauk. Est. SSR, Fiz.-Mat. 25(no. 2), 141–144 (1976).

    MathSciNet  MATH  Google Scholar 

  4. 4.

    Kan, Yu. S. & Kibzun, A. I. Convexity Properties of Probability Functions and Quantiles in Optimization Problems. Autom. Remote Control 57(no. 3), 368–383 (1996).

    MATH  Google Scholar 

  5. 5.

    Van Ackooij, W. Eventual Convexity of Chance Constrained Feasible Sets. Optimization (J. Math. Programm. Oper. Res.) 64(no. 5), 1263–1284 (2015).

    MathSciNet  MATH  Google Scholar 

  6. 6.

    Prékopa, A. On Logarithmic Concave Measures and Functions. Acta Sci. Math. (Szeged) 34, 335–343 (1973).

    MathSciNet  MATH  Google Scholar 

  7. 7.

    Borell, C. Convex Set Functions in d-Space. Period. Math. Hung. 6(no. 2), 111–136 (1975).

    MathSciNet  Article  Google Scholar 

  8. 8.

    Norkin, V. I. & Roenko, N. V. α-Concave Functions and Measures and Their Applications. Cybern. Syst. Anal. 27(no. 6), 860–869 (1991).

    MathSciNet  Article  Google Scholar 

  9. 9.

    Lejeune, M. & Noyan, N. Mathematical Programming Approaches for Generating p=Efficient Points. Eur. J. Oper. Res. 207, 590–600 (2010).

    MathSciNet  Article  Google Scholar 

  10. 10.

    Dentcheva, D., Prékopa, A. & Ruszczyński, A. On Convex Probabilistic Programming with Discrete Distribution. Nonlin. Anal. 47, 1997–2009 (2001).

    MathSciNet  Article  Google Scholar 

  11. 11.

    Van Ackooij, W., Berge, V., de Oliveira, W. & Sagastizábal, C. Probabilistic Optimization via Approximate p-Efficient Points and Bundle Methods. Comput. Oper. Res. 77, 177–193 (2017).

    MathSciNet  Article  Google Scholar 

  12. 12.

    Lejeune, M.A. and Prékopa, A.Relaxations for Probabilistically Constrained Stochastic Programming Problems: Review and Extensions, Ann. Oper. Res., 2018.

  13. 13.

    Vapnik, V. N. & Chervonenkis, A. Ya Teoriya raspoznavaniya obrazov (statisticheskie problemy obucheniya) (Theory of Image Recognition (Statistical Problems of Learning)). (Nauka, Moscow, 1974).

    Google Scholar 

  14. 14.

    Vapnik, V. N. & Chervonenkis, A. Ya On the Uniform Convergence of Relative Frequencies of Events to Their Probabilities. Theory Probab. Appl. 16(no. 2), 264–280 (1971).

    Article  Google Scholar 

  15. 15.

    Shapiro, A.Monte Carlo Sampling Methods, in Handbooks in Operations Research and Management Science, Ruszczyński, A. and Shapiro, A., Eds., vol. 10, pp. 353–425, Dordrecht: North-Holland, 2003.

  16. 16.

    Shapiro, A., Dentcheva, D., and Ruszczyński, A.Lectures on Stochastic Programming. Modeling and Theory, Philadelphia: Society for Industrial and Applied Mathematics (SIAM), 2014.

  17. 17.

    Kleywegt, A. J., Shapiro, A. & Homem-De-Mello, T. The Sample Average Approximation Method for Stochastic Discrete Optimization. SIAM J. Optim. 12(no. 2), 479–502 (2001).

    MathSciNet  Article  Google Scholar 

  18. 18.

    Luedtke, J. & Ahmed, S. A Sample Approximation Approach for Optimization with Probabilistic Constraints. SIAM J. Optim. 19(no. 2), 674–699 (2008).

    MathSciNet  Article  Google Scholar 

  19. 19.

    Kibzun, A. I., Ivanov, S. V. & Stepanova, A. S. Construction of Confidence Absorbing Set for Analysis of Static Stochastic Systems. Autom. Remote Control 81(no. 4), 589–601 (2020).

    Article  Google Scholar 

  20. 20.

    Vasil’eva, S. N. & Kan, Yu. S. Approximation of Probabilistic Constraints in Stochastic Programming Problems with a Probability Measure Kernel. Autom. Remote Control 80(no. 11), 2005–2016 (2019).

    MathSciNet  Article  Google Scholar 

  21. 21.

    Vasil’eva, S. N. & Kan, Yu. S. Linearization Method for Solving Quantile Optimization Problems with Loss Function Depending on a Vector of Small Random Parameters. Autom. Remote Control 78(no. 7), 1251–1263 (2017).

    MathSciNet  Article  Google Scholar 

  22. 22.

    Shiryaev, A.N.Probability-1,2, New York: Springer-Verlag, 2019, 3rd ed.

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kibzun, A., Ivanov, S. Construction of Confidence Absorbing Sets Using Statistical Methods. Autom Remote Control 81, 2206–2219 (2020).

Download citation


  • stochastic programming
  • confidence absorbing set
  • probability function
  • quantile function