Skip to main content
Log in

Upper Bounds on Peaks in Discrete-Time Linear Systems

  • Linear Systems
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

Trajectories of stable linear systems with nonzero initial conditions are known to deviate considerably from the zero equilibrium point at finite time instances. In the paper we analyze transients in discrete-time linear systems and provide upper bounds on deviations (peaks) via use of linear matrix inequalities. An approach to peak-minimizing feedback design is also proposed. An analysis of peak effects for norms of powers of Schur stable matrices is presented and a robust version of the problem is considered. The theory is illustrated by numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tekhnicheskaya kibernetika. Teoriya avtomaticheskogo regulirovaniya. Kn. 2: Analiz i sintez lineinykh nepreryvnykh i diskretnykh sistem avtomaticheskogo regulirovaniya (Automatic Control and Computer Engineering, vol. 2: Analysis and Design of Linear, Continuous-and Discrete-Time Automatic Regulation Systems), Solodovnikov, V.V., Ed., Moscow: Mashinostroenie, 1967.

  2. Pervozvanskii, A.A., Kurs teorii avtomaticheskogo upravleniya (A Course in Automatic Control Theory), Moscow: Nauka, 1986.

    Google Scholar 

  3. Kuo, B.C. and Golnaraghi, F., Automatic Control Systems, New York: Wiley, 2003, 8th ed.

    Google Scholar 

  4. Letov, A.M., Dinamika poleta i upravlenie (Flight Dynamics and Control), Moscow: Nauka, 1969.

    Google Scholar 

  5. Polyak, B.T. and Smirnov, G., Large Deviations for Non-zero Initial Conditions in Linear Systems, Automatica, 2016, vol. 74, no. 12, pp. 297–307.

    Article  MathSciNet  MATH  Google Scholar 

  6. Polyak, B.T., Tremba, A.A, Khlebnikov, M.V., Shcherbakov, P.S, and Smirnov, G.V., Large Deviations in Linear Control Systems with Nonzero Initial Conditions, Autom. Remote Control, 2016, vol. 76, no. 6, pp. 957–976.

    Article  MathSciNet  MATH  Google Scholar 

  7. Polyak, B.T., Khlebnikov, M.V, and Shcherbakov, P.S., Upravlenie lineinymi sistemami pri vneshnikh vozmushcheniyakh: tekhnika lineinykh matrichnykh neravenstv (Control of Linear Systems Subject to Exogenous Disturbances: The Linear Matrix Inequalitiy Technique), Moscow: LENAND, 2014.

    Google Scholar 

  8. Vladimirov, A.A. and Izmailov, R.N., Transients in Adaptive Control of a Deterministic Autoregression Process, Autom. Remote Control, 1992, vol. 53, no. 6, pp. 800–803.

    MathSciNet  MATH  Google Scholar 

  9. Delyon, B., Izmailov, R., and Juditsky, A., The Projection Algorithm and Delay of Peaking in Adaptive Control, IEEE Trans. Autom. Control, 1993, vol. 38, no. 4, pp. 581–584.

    Article  MathSciNet  MATH  Google Scholar 

  10. Polyak, B.T., Shcherbakov, P.S., and Smirnov, G., Peak Effects in Stable Linear Difference Equations, J. Difference Eqs. Appl., 2018, vol. 24, no. 9, pp. 1488–1502.

    Article  MathSciNet  MATH  Google Scholar 

  11. Kozyakin, V. and Pokrovskii, A., Estimates of Amplitudes of Transient Regimes in Quasi-controllable Discrete Systems, arXiv:0908.4138v1 [math.DS], August 2009.

  12. Kogan, M.M. and Krivdina, L.N., Synthesis of Multipurpose Linear Control Laws of Discrete Objects under Integral and Phase Constraints, Autom. Remote Control, 2011, vol. 72, no. 7, pp. 1427–1439.

    Article  MathSciNet  MATH  Google Scholar 

  13. Hinrichsen, D., Plischke, E., and Wurth, F., State Feedback Stabilization with Guaranteed Transient Bounds, Proc. 15th Int. Symp. Math. Theory Networks & Syst., Notre Dame, USA, August 2002.

    Google Scholar 

  14. Whidborne, J.F. and McKernan, J., On Minimizing Maximum Transient Energy Growth, IEEE Trans. Autom. Control, 2007, vol. 52, no. 9, pp. 1762–1767.

    Article  MATH  Google Scholar 

  15. Balandin, D.V. and Kogan M.M., Lyapunov Function Method for Control Law Synthesis under One Integral and Several Phase Constraints, Differ. Equat., 2009, vol. 45, no. 5, pp. 670–679.

    Article  MATH  Google Scholar 

  16. Boyd, S., El Ghaoui, L., Feron, E., and Balakrishnan, V., Linear Matrix Inequalities in Systems and Control Theory, Philadelphia: SIAM, 1994.

    Book  MATH  Google Scholar 

  17. Horn, R.A. and Johnson, C.R., Matrix Analysis, New York: Cambridge Univ. Press, 1986. Translated under the title Matrichnyi analiz, Moscow: Mir, 1989.

    Google Scholar 

  18. Trefethen, L.N. and Embree, M., Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators, Princeton, New Jersey: Princeton Univ. Press, 2005.

    MATH  Google Scholar 

  19. Dowler, D.A., Bounding the Norm of Matrix Powers, MS Thesis, Math. Dept., Brigham Young University, USA, 2013. URL https://books.google.ru/books/about/Bounding the Norm of Matrix Powers. html?id=ICLtoQEACAAJ&redir esc=y

    Google Scholar 

  20. Kreiss, H.O., Über die Stabilitätsdefinition für Differenzengleichungen die partielle Differentialgleichungen Approximieren, BIT Numer. Math., 1962, vol. 2, no. 3, pp. 153–181.

    Article  MATH  Google Scholar 

  21. Gahinet, P., Nemirovski, A., Laub, A.J., and Chilali, M., LMI Control Toolbox For Use with Matlab, Natick: MathWorks, 1995.

    Google Scholar 

  22. Grant, M. and Boyd, S., CVX: Matlab Software for Disciplined Convex Programming (Web Page and Software). http://cvxr.com/cvx/

  23. Polyak, B.T. and Shcherbakov, P.S., Superstable Linear Control Systems. I. Analysis, Autom. Remote Control, 2002, vol. 63, no. 8, pp. 1239–1254.

    Article  MathSciNet  MATH  Google Scholar 

  24. Polyak, B.T. and Shcherbakov, P.S., Superstable Linear Control Systems. II. Design, Autom. Remote Control, 2002, vol. 63, no. 11, pp. 1745–1763.

    Article  MathSciNet  MATH  Google Scholar 

  25. Polyak, B.T., Extended Superstability in Control Theory, Autom. Remote Control, 2004, vol. 65, no. 4, pp. 567–576.

    Article  MathSciNet  MATH  Google Scholar 

  26. Petersen, I.R., A Stabilization Algorithm for a Class of Uncertain Linear Systems, Syst. Control Lett., 1987, vol. 8, pp. 351–357.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. M. Ahiyevich.

Additional information

Original Russian Text © V.N. Ahiyevichh, S.E. Parsegov, P.S. Shcherbakov, 2018, published in Avtomatika i Telemekhanika, 2018, No. 11, pp. 32–46.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahiyevich, U.M., Parsegov, S.E. & Shcherbakov, P.S. Upper Bounds on Peaks in Discrete-Time Linear Systems. Autom Remote Control 79, 1976–1988 (2018). https://doi.org/10.1134/S0005117918110036

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117918110036

Keywords

Navigation