Skip to main content
Log in

Comparison of Sub-Gramian Analysis with Eigenvalue Analysis for Stability Estimation of Large Dynamical Systems

  • Control Problems for the Development of Large-Scale Systems
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

In earlier works, solutions of Lyapunov equations were represented as sums of Hermitian matrices corresponding to individual eigenvalues of the system or their pairwise combinations. Each eigen-term in these expansions are called a sub-Gramian. In this paper, we derive spectral decompositions of the solutions of algebraic Lyapunov equations in a more general formulation using the residues of the resolvent of the dynamics matrix. The qualitative differences and advantages of the sub-Gramian approach are described in comparison with the traditional analysis of eigenvalues when estimating the proximity of a dynamical system to its stability boundary. These differences are illustrated by the example of a system with a multiple root and a system of two resonating oscillators. The proposed approach can be efficiently used to evaluate resonant interactions in large dynamical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Simonchini, V., Computational Methods for Linear Matrix Equations, SIAM Rev., 2014, vol. 58, no. 3, pp. 377–441.

    Article  MathSciNet  Google Scholar 

  2. Polyak, B.T. and Shcherbakov, P.S., Robastnaya ustoichivost’ i upravlenie (Robust Stability and Control), Moscow: Nauka, 2002.

    Google Scholar 

  3. Lancaster, P., Explicit Solution of Linear Matrix Equations, SIAM Rev., 1970, vol. 12, no. 4, pp. 544–566.

    Article  MathSciNet  MATH  Google Scholar 

  4. Sylvester, J., Sur l’équation en matrices px=xq, Comptes Rendus de l’Acad. Sci., 1884, pp. 67–71.

    Google Scholar 

  5. Lyapunov, A., Problème général de la stabilité du mouvement, Commun. Soc. Math. Kharkov, 1893. Reprinted in Ann. of Math. Studies, 1949, vol.17.

  6. Talbot, A., The Evaluation of Integrals of Products of Linear Systems Responses, Quart. J. Mech. Appl. Math., 1959, vol. 12, no. 4, pp. 488–503.

    Article  MathSciNet  MATH  Google Scholar 

  7. Daletskii, Yu.L. and Krein, M.G., Ustoichivost’ reshenii differentsial’nykh uravnenii v banakhovom prostranstve (Stability of Solutions of Differential Equations in a Banach Space), Moscow: Nauka, 1970.

    Google Scholar 

  8. Godunov, S.K., Lektsii po sovremennym aspektam lineinoi algebry (Lectures on Modern Aspects of Linear Algebra), Novosibirsk: Nauchnaya Kniga, 2002.

    Google Scholar 

  9. Demidenko, G.V., Matrichnye uravneniya (Matrix Equations), Novosibirsk: Novosib. Gos. Univ., 2009.

    Google Scholar 

  10. Yadykin, I.B., On Properties of Gramians of Continuous Control Systems, Autom. Remote Control, 2010, vol. 71, no. 6, pp. 1011–1021.

    Article  MathSciNet  MATH  Google Scholar 

  11. Yadykin, I.B., Iskakov, A.B., and Akhmetzyanov, A.V., Stability Analysis of Large-Scale Dynamical Systems by Sub-Gramian Approach, Int. J. Robust Nonlin. Control, 2014, vol. 24, no. 8–9, pp. 1361–1379.

    Article  MathSciNet  MATH  Google Scholar 

  12. Yadykin, I.B., On Spectral Decompositions of Solutions to Discrete Lyapunov Equations, Dokl. Math., 2016, vol. 93, no. 3, pp. 344–347.

    Article  MathSciNet  MATH  Google Scholar 

  13. Yadykin, I.B., Kataev, D.E., Iskakov, A.B., and Shipilov, V.K., Characterization of Power Systems Near Their Stability Boundary Using the Sub-Gramian Method, Control Eng. Practice, 2016, vol. 53, pp. 173–183.

    Article  Google Scholar 

  14. Yadykin, I.B. and Iskakov, A.B., Energy Approach to Stability Analysis of the Linear Stationary Dynamic Systems, Autom. Remote Control, 2016, vol. 77, no. 12, pp. 2132–2149.

    Article  MathSciNet  MATH  Google Scholar 

  15. Benner, P. and Damm, T., Lyapunov Equations, Energy Functionals, and Model Order Reduction of Bilinear and Stochastic Systems, SIAM J. Control Optim., 2011, vol. 49, no. 2, pp. 686–711.

    Article  MathSciNet  MATH  Google Scholar 

  16. Barinov, V.A. and Sovalov, S.A., Rezhimy energosistem: metody analiza i upravleniya (Modes of Power Systems: Methods of Analysis and Control), Moscow: Energoatomizdat, 1990.

    Google Scholar 

  17. Voropai, N.I., Uproshchenie matematicheskikh modelei dinamiki elektroenergeticheskikh sistem (Simplifying Mathematical Models of Electric Power Systems Dynamics), Novosibirsk: Nauka, 1981.

    Google Scholar 

  18. Kundur, P., Power Systems Stability and Control, New York: McGrow-Hill, 1994.

    Google Scholar 

  19. Rogers, M.G., Power Systems Oscillations, Norwell: Kluwer, 2000.

    Book  Google Scholar 

  20. Klein, M., Rogers, G.J., and Kundur, P., A Fundamental Study of Inter-Area Oscillations in Power Systems, IEEE Trans. Power Syst., 1991, vol. 6, no. 3, pp. 914–921.

    Article  Google Scholar 

  21. Bialek, J.W., Why Has it Happened Again? Comparison between the UCTE Blackout in 2006 and Blackouts of 2003, Proc. IEEE Lausanne Power Tech Int. Conf., Lausanne, Switzerland, 2007.

    Google Scholar 

  22. Neuman, P., Island Operations of Parallel Synchronous Generators—Simulators Case Study for Large Power Plants, IFAC-PapersOnLine, 2016, vol. 49, no. 27, pp. 164–169.

    Article  Google Scholar 

  23. Weber, H. and Al Ali, S., Influence of Huge Renewable Power Production on Inter Area Oscillations in the European ENTSO-E-System, IFAC-PapersOnLine, 2016, vol. 49, no. 27, pp. 12–17.

    Article  Google Scholar 

  24. Ruhle, O., Eigenvalue Analysis—All Information on Power System Oscillation Behavior Rapidly Analyzed, Siemens PTI. Newsletter, 2006, no. 99. https://w3.usa.siemens.com/datapool/us/SmartGrid/docs/pti/2006June/Eigenvalue Analysis.pdf

  25. Yadykin, I.B. and Iskakov, A.B., Spectral Decompositions for the Solutions of Sylvester, Lyapunov, and Krein Equations, Dokl. Math., 2017, vol. 95, no. 1, pp. 103–107.

    Article  MATH  Google Scholar 

  26. Polyak, B.T. and Tremba, A.A., Analytic Solution of a Linear Differential Equation with Identical Roots of the Characteristic Polynomial, Proc. XII Rus. Conf. on Control Problems, VSPU-2014, Moscow: Inst. Probl. Upravlen., 2014, pp. 212–217.

    Google Scholar 

  27. Antoulas, A.C., Approximation of Large-Scale Dynamical Systems, Philadelphia: SIAM, 2005.

    Book  MATH  Google Scholar 

  28. Gradshtein, I.S. and Ryzhik, I.M., Tablitsy integralov, summ, ryadov i proizvedenii (Tables of Integrals, Sums, Series, and Products), Moscow: Fizmatlit, 1963.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. B. Yadykin.

Additional information

Original Russian Text © I.B. Yadykin, A.B. Iskakov, 2018, published in Avtomatika i Telemekhanika, 2018, No. 10, pp. 39–54.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadykin, I.B., Iskakov, A.B. Comparison of Sub-Gramian Analysis with Eigenvalue Analysis for Stability Estimation of Large Dynamical Systems. Autom Remote Control 79, 1767–1779 (2018). https://doi.org/10.1134/S000511791810003X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000511791810003X

Keywords

Navigation