Automation and Remote Control

, Volume 79, Issue 9, pp 1558–1568 | Cite as

Synthesis of the Control System for a Second Order Non-Linear Object with an Incomplete Description

  • S. I. KolesnikovaEmail author
Nonlinear Systems


We consider the control problem for a poorly formalizable object (in terms of L.A. Rastrigin) defined as a system of ordinary second-order differential (difference) equations with a nonlinear right-hand side in a general form. We analyze the conditions for the application of the method of nonlinear adaptation on manifolds as generalizations of the algorithm of analytic design of aggregated regulators for such an object under perturbations along a controlled coordinate with an unknown description. We consider examples of the use of thus algorithm for different cases of analytic descriptions of the target manifold.


nonlinear control on manifolds poorly formalized second-order object analytic design of aggregated regulators nonlinear adaptation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Krasovskii, A.A., Matematicheskaya i prikladnaya teoriya. Izbrannye trudy (Mathematical and Applied Theory. Selected Works), Moscow: Nauka, 2002.Google Scholar
  2. 2.
    Kolesnikov, A.A., Sinergetika i problemy teorii upravleniya: sb. nauchn. tr. (Synergetics and Problems of Control Theory: Selected Works), Kolesnikov, A.A., Ed., Moscow: Fizmatlit, 2004.Google Scholar
  3. 3.
    Kolesnikov, A.A., Method of Integral Adaptation for Nonlinear Systems on Invariant Manifolds, Proc. 3rd Multiconference on Control Problems, 2010, pp. 29–34.Google Scholar
  4. 4.
    Tyukin, I.Yu. and Terekhov, V.A., Adaptatsiya v nelineinykh dinamicheskikh sistemakh (Adaptation in Nonlinear Dynamical Systems), St. Petersburg: LKI, 2008.Google Scholar
  5. 5.
    Miroshnik, I.V., Nikiforov, V.O., and Fradkov, A.L., Nelineinoe i adaptivnoe upravlenie slozhnymi dinamicheskimi sistemami (Nonlinear and Adaptive Control over Complex Dynamical Systems), St. Petersburg: Nauka, 2000.zbMATHGoogle Scholar
  6. 6.
    Prangishvili, I.V., Pashchenko, F.F., and Busygin, B.P., Sistemnye zakony i zakonomernosti v elektrodinamike, prirode i obshchestve (Systemic Laws and Dependencies in Electrodynamics, Nature, and Society), Moscow: Nauka, 2001.Google Scholar
  7. 7.
    Khalil, H.K., Nonlinear Systems, New York: Prentice Hall, 2002. Translated under the title Nelineinye sistemy, Izhevsk: Regulyarnaya i Khaoticheskaya Dinamika, 2009.zbMATHGoogle Scholar
  8. 8.
    Utkin, V.I., Skol’zyashchie rezhimy v zadachakh optimizatsii i upravleniya (Sliding Modes in Optimization and Control Problems), Moscow: Nauka, 1981.Google Scholar
  9. 9.
    Astolfi, A., Karagiannis, D., and Ortega, R., Nonlinear and Adaptive Control with Applications, London: Springer, 2008.CrossRefzbMATHGoogle Scholar
  10. 10.
    Kokotovic, P.V. and Arcak, M., Constructive Nonlinear Control: Progress in the 90s, Proc. 14th IFAC World Congr., Beijing, China, 1999, pp. 49–77.Google Scholar
  11. 11.
    Byrnes, C.I. and Isidori, A., Limit Sets, Zero Dynamics, and Internal Models in the Problem of Nonlinear Output Regulation, IEEE Trans. Automat. Control, 2003, vol. 48, no. 10, pp. 1712–1723.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kulebakin, B.C., On the Behaviour of Continuously Perturbed Automated Linear Systems, Dokl. Akad. Nauk, 1949, vol. 68, no. 5, pp. 73–79.MathSciNetGoogle Scholar
  13. 13.
    Johnson, C.D., A Discrete-Time Disturbance-Accommodating Control Theory for Digital Control of Dynamical Systems, Control Dynam. Syst., 1982, vol. 18, pp. 223–315.CrossRefzbMATHGoogle Scholar
  14. 14.
    Kolesnikova, S. and Mylnikova, E., Application of Nonlinear Adaptation Method for Discrete Economic Objects, 2017 Int. Conf. Appl. Mechan. and Mechan. Automat. (AMMA 2017), DEStech Publications, pp. 349–355.Google Scholar
  15. 15.
    Levi-Civita, T. and Amaldi, T., Compendio di meccanica razionale, Bologna: Nicola Zanichelli, 1938. Translated under the title Kurs teoreticheskoi mekhaniki, vol. 2, part 1, Moscow: Inostrannaya Literatura, 1951.zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Tomsk State National Research UniversityTomskRussia

Personalised recommendations