Skip to main content
Log in

Meixner Nonorthogonal Filters

  • Intellectual Control Systems, Data Analysis
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

Consideration was given to a new representation of the Meixner filters which, in distinction to the previously proposed filters, have a rational form of representation of any integer values of the additional parameter α, can be used to describe the dynamic systems with fractional order for the noninteger α, and are obtained directly from the continuous generalized Laguerre filters through a modified bilinear transformation. The paper described a design of the proposed nonorthogonal Meixner filter, numerically stable algorithm to optimize the filter parameters, as well as the results of computer experiments corroborating efficiency of the nonorthogonal Meixner filters for solution of practical problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. King, R.E. and Paraskevopoulos, P.N., Digital Laguerre Filters Int. J. Circuit Theory Appl., 1977, vol. 5, no. 1, pp. 81–91.

    Article  Google Scholar 

  2. Nurges, Yu., Laguerre Models in the Problems of Approximation and Identification, Autom. Remote Control, 1987, no. 3, pp. 88–96.

    MATH  Google Scholar 

  3. Telescu, M., Iassamen, N., Cloastre, P., and Tanguy, N., A Simple Algorithm for Stable Order Reduction of z-domain, Signal Proc., 2013, vol. 93, pp. 332–337.

    Article  Google Scholar 

  4. Nurges, U.A., Meixner Models of Linear Discrete Systems, Autom. Remote Control, 1988, vol. 49, no. 12, pp. 1638–1644.

    MathSciNet  MATH  Google Scholar 

  5. Meixner, J., Orthogonale Polynomsysteme mit einer besonderen Gestalt der erzeugenden Funktion, J. Lond. Math. Soc., 1934, vol. 9, no. 1, pp. 6–13.

    Article  MathSciNet  MATH  Google Scholar 

  6. Perov, V.P., Design of Sampled-data Systems in an Orthogonal Basis. III, Autom. Remote Control, 1976, vol. 37, no. 10, pp. 1517–1522.

    MathSciNet  MATH  Google Scholar 

  7. den Brinker, A.C., Meixner-like Functions Having a Rational z-transform, Int. J. Circuit Theory Appl., 1995, vol. 23, no. 1, pp. 237–246.

    Article  MATH  Google Scholar 

  8. Asyali, M.H. and Juusola, M., Use of Meixner Functions in Estimation of Volterra Kernels of Nonlinear Systems with Delay, IEEE Trans. Biomed. Engineer., 2005, vol. 52, no. 2, pp. 229–237.

    Article  Google Scholar 

  9. Oliveira, F.M., Tran, W.H., Lesser, D., et al., Autonomic and Metabolic Effects of OSA in Childhood Obesity, in Proc. 32 Ann. Int. Conf. IEEE EMBS, Buenos Aires, Argentina, 2010, pp. 6134–6137.

    Google Scholar 

  10. Chen, Yi. and Hunter, I.W., Nonlinear Stochastic System Identification of Skin Using Volterra Kernels, Ann. Biomed. Eng., 2013, vol. 41, no. 4, pp. 847–862.

    Article  Google Scholar 

  11. Apartsin, A.S. and Sidler, I.V., Using the Nonclassical Volterra Equations of the First Kind to Model the Developing Systems, Autom. Remote Control, 2013, vol. 74, no. 6, pp. 899–910.

    Article  MathSciNet  MATH  Google Scholar 

  12. Markova, E.V. and Sidorov, D.N., On One Integral Volterra Model of Developing Dynamical Systems, Autom. Remote Control, 2014, vol. 75, no. 3, pp. 413–421.

    Article  MathSciNet  MATH  Google Scholar 

  13. Prokhorov, S.A. and Kulikovskikh, I.M., Unique Condition for Generalized Laguerre Functions to Solve Pole Position Problem, Signal Proc., 2015, vol. 108, no. 1, pp. 25–29.

    Article  Google Scholar 

  14. Prokhorov, S.A. and Kulikovskikh, I.M., Condition for Optimality of the Meixner Filters, Zh. Radioelektron.: Electronic Journal, 2015, no. 4. https://doi.org/jre.cplire.ru/mac/apr15/9/text.html

  15. Prokhorov, S.A. and Kulikovskikh, I.M., Pole Position for Meixner Filters, Signal Proc., 2016, vol. 120, no. 1, pp. 8–12.

    Article  Google Scholar 

  16. Klink, W.H. and Payne, G.L., Approximating with Nonorthogonal Basis Functions, J. Comput. Physics, 1976, vol. 21, no. 2, pp. 208–226.

    Article  MathSciNet  MATH  Google Scholar 

  17. Butkovskii, A.G., Postnov, S.S., and Postnova, E.A., Fractional Integro-Differential Calculus and Its Control-Theoretical Applications. II, Autom. Remote Control, 2013, vol. 74, no. 5, pp. 725–749.

    Article  MathSciNet  MATH  Google Scholar 

  18. Aoun, M., Malti, R., Levron, F., and Oustaloup, A., Synthesis of Fractional Laguerre Basis for System Approximation, Automatica, 2007, vol. 43, no. 9, pp. 1640–1648.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Kulikovskikh.

Additional information

Original Russian Text © I.M. Kulikovskikh, 2018, published in Avtomatika i Telemekhanika, 2018, No. 8, pp. 111–128.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulikovskikh, I.M. Meixner Nonorthogonal Filters. Autom Remote Control 79, 1458–1473 (2018). https://doi.org/10.1134/S0005117918080088

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117918080088

Keywords

Navigation